Objectives

• Introduce types of curves and surfaces
 - Explicit
 - Implicit
 - Parametric
 - Strengths and weaknesses

• Discuss Modeling and Approximations
 - Conditions
 - Stability
Escaping Flatland

• Until now we have worked with flat entities such as lines and flat polygons
 - Fit well with graphics hardware
 - Mathematically simple
• But the world is not composed of flat entities
 - Need curves and curved surfaces
 - May only have need at the application level
 - Implementation can render them approximately with flat primitives
Modeling with Curves

data points

approximating curve

interpolating data point
What Makes a Good Representation?

• There are many ways to represent curves and surfaces
• Want a representation that is
 - Stable
 - Smooth
 - Easy to evaluate
 - Must we interpolate or can we just come close to data?
 - Do we need derivatives?
Explicit Representation

• Most familiar form of curve in 2D
 \[y = f(x) \]

• Cannot represent all curves
 - Vertical lines
 - Circles

• Extension to 3D
 - \[y = f(x), \ z = g(x) \]
 - The form \[z = f(x, y) \] defines a surface
Implicit Representation

- Two dimensional curve(s)
 \[g(x,y) = 0 \]
- Much more robust
 - All lines \(ax + by + c = 0 \)
 - Circles \(x^2 + y^2 - r^2 = 0 \)
- Three dimensions \(g(x,y,z) = 0 \) defines a surface
 - Intersect two surface to get a curve
- In general, we cannot exactly solve for points that satisfy the equation
Algebraic Surface

\[\sum_{i,j,k} \alpha_l x^i y^j z^k \]

- Quadric surface \[2 \geq i+j+k \]
- At most 10 terms
- Can solve intersection with a ray by reducing problem to solving quadratic equation
Parametric Curves

• Separate equation for each spatial variable

x = x(u)
 y = y(u)
 z = z(u)

 \[p(u) = [x(u), y(u), z(u)]^T \]

• For \(u_{\text{max}} \geq u \geq u_{\text{min}} \) we trace out a curve in two or three dimensions
Selecting Functions

• Usually we can select “good” functions
 - not unique for a given spatial curve
 - Approximate or interpolate known data
 - Want functions which are easy to evaluate
 - Want functions which are easy to differentiate
 • Computation of normals
 • Connecting pieces (segments)
 - Want functions which are smooth
Parametric Lines

We can normalize u to be over the interval $(0,1)$

Line connecting two points p_0 and p_1

$$p(u) = (1-u)p_0 + up_1$$

Ray from p_0 in the direction d

$$p(u) = p_0 + ud$$

$p(0) = p_0$

$p(1) = p_1$

$p(0) = p_0$

$p(1) = p_0 + d$
Parametric Surfaces

- Surfaces require 2 parameters

 \[x = x(u,v) \]

 \[y = y(u,v) \]

 \[z = z(u,v) \]

 \[p(u,v) = [x(u,v), y(u,v), z(u,v)]^T \]

- Want same properties as curves:

 - Smoothness

 - Differentiability

 - Ease of evaluation
We can differentiate with respect to u and v to obtain the normal at any point p.

\[
\frac{\partial p(u, v)}{\partial u} = \begin{bmatrix}
\frac{\partial p_x(u, v)}{\partial u} \\
\frac{\partial p_y(u, v)}{\partial u} \\
\frac{\partial p_z(u, v)}{\partial u}
\end{bmatrix}
\quad \frac{\partial p(u, v)}{\partial v} = \begin{bmatrix}
\frac{\partial p_x(u, v)}{\partial v} \\
\frac{\partial p_y(u, v)}{\partial v} \\
\frac{\partial p_z(u, v)}{\partial v}
\end{bmatrix}
\]

Tangents in u and v directions

\[
n = \frac{\partial p(u, v)}{\partial u} \times \frac{\partial p(u, v)}{\partial v}
\]
Parametric Planes

point-vector form

\[p(u, v) = p_0 + uq + vr \]

\[n = q \times r \]

three-point form

\[q = p_1 - p_0 \]
\[r = p_2 - p_0 \]
Parametric Sphere

\[x(u,v) = r \cos \theta \sin \phi \]
\[y(u,v) = r \sin \theta \sin \phi \]
\[z(u,v) = r \cos \phi \]

\[360 \geq \theta \geq 0 \]
\[180 \geq \phi \geq 0 \]

\(\theta \) constant: circles of constant longitude

\(\phi \) constant: circles of constant latitude

Differentiate to show \(\mathbf{n} = \mathbf{p} \)
Curve Segments

- After normalizing u, each curve is written as:
 \[p(u) = [x(u), y(u), z(u)]^T, \quad 1 \geq u \geq 0 \]

- In classical numerical methods, we design a single global curve.

- In computer graphics and CAD, it is better to design small connected curve segments.

Join point: $p(1) = q(0)$
Parametric Polynomial Curves

\[x(u) = \sum_{i=0}^{N} c_{xi} u^i \quad y(u) = \sum_{j=0}^{M} c_{yj} u^j \quad z(u) = \sum_{k=0}^{L} c_{zk} u^k \]

• If N=M=K, we need to determine 3(N+1) coefficients

• Equivalently we need 3(N+1) independent conditions

• Noting that the curves for x, y and z are independent, we can define each independently in an identical manner

• We will use the form where p can be any of x, y, z

\[p(u) = \sum_{k=0}^{L} c_{k} u^k \]
Why Polynomials

• Easy to evaluate
• Continuous and differentiable everywhere
 - Must worry about continuity at join points including continuity of derivatives

\[p(u) \]

\[q(u) \]

join point \(p(1) = q(0) \)
but \(p'(1) \neq q'(0) \)
Cubic Parametric Polynomials

• N=M=L=3, gives balance between ease of evaluation and flexibility in design

\[p(u) = \sum_{k=0}^{3} c_k u^k \]

• Four coefficients to determine for each of \(x, y \) and \(z \)

• Seek four independent conditions for various values of \(u \) resulting in 4 equations in 4 unknowns for each of \(x, y \) and \(z \)

 - Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data
Cubic Polynomial Surfaces

\[p(u,v) = [x(u,v), y(u,v), z(u,v)]^T \]

where

\[p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^i v^j \]

\(p \) is any of \(x, y \) or \(z \)

Need 48 coefficients (3 independent sets of 16) to determine a surface patch
Designing Parametric Cubic Curves
Objectives

- Introduce the types of curves
 - Interpolating
 - Hermite
 - Bezier
 - B-spline

- Analyze their performance
Matrix-Vector Form

\[p(u) = \sum_{k=0}^{3} c_k u^k \]

define \(\mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 1 \\ u \\ u^2 \\ u^3 \end{bmatrix} \)

then \(p(u) = \mathbf{u}^T \mathbf{c} = \mathbf{c}^T \mathbf{u} \)
Given four data (control) points p_0, p_1, p_2, p_3 determine cubic $p(u)$ which passes through them.

Must find c_0, c_1, c_2, c_3.

Interpolating Curve
Interpolation Equations

apply the interpolating conditions at \(u=0, 1/3, 2/3, 1 \)

\[
\begin{align*}
p_0 &= p(0) = c_0 \\
p_1 &= p(1/3) = c_0 + (1/3)c_1 + (1/3)^2c_2 + (1/3)^3c_3 \\
p_2 &= p(2/3) = c_0 + (2/3)c_1 + (2/3)^2c_2 + (2/3)^3c_3 \\
p_3 &= p(1) = c_0 + c_1 + c_2 + c_3
\end{align*}
\]

or in matrix form with \(\mathbf{p} = [p_0 \ p_1 \ p_2 \ p_3]^T \)

\[
\mathbf{p} = \mathbf{A} \mathbf{c}
\]

\[
\mathbf{A} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1/3 & (1/3)^2 & (1/3)^3 \\
1 & 1/3 & (2/3)^2 & (2/3)^3 \\
1 & 1/3 & (2/3)^2 & (2/3)^3 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]
Interpolation Matrix

Solving for \(c \) we find the *interpolation matrix*

\[
M_I = A^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-5.5 & 9 & -4.5 & 1 \\
9 & 22.5 & 18 & -4.5 \\
-4.5 & 13.5 & -13.5 & 4.5
\end{bmatrix}
\]

\[c = M_I p \]

Note that \(M_I \) does not depend on input data and can be used for each segment in \(x, y, \) and \(z \)
Blending Functions

Rewriting the equation for $p(u)$

$$p(u) = u^Tc = u^TM_ip = b(u)^Tp$$

where $b(u) = [b_0(u) \ b_1(u) \ b_2(u) \ b_3(u)]^T$ is an array of blending polynomials such that

$p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3$

- $b_0(u) = -4.5(u-1/3)(u-2/3)(u-1)$
- $b_1(u) = 13.5u \ (u-2/3)(u-1)$
- $b_2(u) = -13.5u \ (u-1/3)(u-1)$
- $b_3(u) = 4.5u \ (u-1/3)(u-2/3)$
Blending Functions

- These functions are not smooth
 - Hence the interpolation polynomial is not smooth
Parametric and Geometric Continuity

• We can require the derivatives of x, y, and z to each be continuous at join points (parametric continuity)
• Alternately, we can only require that the tangents of the resulting curve be continuous (geometry continuity)
• The latter gives more flexibility since we need to satisfy only two conditions rather than three at each join point
Parametric Continuity

- **Continuity** (recall from the calculus):
 - Two curves are C^i continuous at a point p iff the i-th derivatives of the curves are equal at p
Interpolating Multiple Segments

use \(p = [p_0 \ p_1 \ p_2 \ p_3]^T \)

use \(p = [p_3 \ p_4 \ p_5 \ p_6]^T \)

Get continuity at join points but not continuity of derivatives.
Other Types of Curves and Surfaces

• How can we get around the limitations of the interpolating form
 - Lack of smoothness
 - Discontinuous derivatives at join points

• We have four conditions (for cubics) that we can apply to each segment
 - Use them other than for interpolation
 - Need only come close to the data
Hermite Form

Use two interpolating conditions and two derivative conditions per segment.

Ensures continuity and first derivative continuity between segments.
Equations

Interpolating conditions are the same at ends

\[p(0) = p_0 = c_0 \]
\[p(1) = p_3 = c_0 + c_1 + c_2 + c_3 \]

\[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 \]

Differentiating we find \(p'(u) = c_1 + 2uc_2 + 3u^2 c_3 \)

Evaluating at end points

\[p'(0) = p'_0 = c_1 \]
\[p'(1) = p'_3 = c_1 + 2c_2 + 3c_3 \]
Matrix Form

\[
q = \begin{bmatrix}
p_0 \\
p_3 \\
p'_0 \\
p'_3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3 \\
\end{bmatrix} \mathbf{c}
\]

Solving, we find \(\mathbf{c} = \mathbf{M}_H q \) where \(\mathbf{M}_H \) is the Hermite matrix

\[
\mathbf{M}_H = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1 \\
\end{bmatrix}
\]
Blending Polynomials

\[p(u) = b(u)^T q \]

\[b(u) = \begin{bmatrix} 2u^3 - 3u^2 + 1 \\ -2u^3 + 3u^2 \\ u^3 - 2u^2 + u \\ u^3 - u^2 \end{bmatrix} \]

Although these functions are smooth, the Hermite form is not used directly in Computer Graphics and CAD because we usually have control points but not derivatives.

However, the Hermite form is the basis of the Bezier form.
Example

• Here the \(p \) and \(q \) have the same tangents at the ends of the segment but different derivatives

• Generate different Hermite curves

• This techniques is used in drawing applications
Bezier and Spline Curves
Objectives

• Introduce Bezier curves
• Derive the required matrices
• Introduce the B-spline and compare it to the standard cubic Bezier
Bezier’ s Idea

• In graphics and CAD, we do not usually have derivative data
• Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form
Computing Derivatives

p_1 located at $u=1/3$

$p' (0) = \frac{p_1 - p_0}{1/3}$

slope $p' (0)$

p_0

p_2 located at $u=2/3$

$p' (1) = \frac{p_3 - p_2}{1/3}$

slope $p' (1)$

p_3
Equations

Interpolating conditions are the same

\[p(0) = p_0 = c_0 \]
\[p(1) = p_3 = c_0 + c_1 + c_2 + c_3 \]

Approximating derivative conditions

\[p'(0) = 3(p_1 - p_0) = c_1 \]
\[p'(1) = 3(p_3 - p_2) = c_1 + 2c_2 + 3c_3 \]

Solve four linear equations for \(c = M_B p \)
Bezier Matrix

\[\mathbf{M}_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \]

\[p(u) = u^T \mathbf{M}_B p = b(u)^T p \]

blending functions
Blending Functions

\[b(u) = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)
Cubic Bezier Curve

- Multiplying it all out gives

\[p(u) = (1-u)^3 p_0 + 3u(1-u)^2 p_1 + 3u^2 (1-u) p_2 + u^3 p_3 \]
Bernstein Polynomials

- The blending functions are a special case of the Bernstein polynomials

\[b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k} \]

- These polynomials give the blending polynomials for any degree Bezier form
 - All zeros at 0 and 1
 - For any degree they all sum to 1
 - They are all between 0 and 1 inside (0,1)
General Form of Bezier Curve

\[\vec{p}(u) = \sum_{i=0}^{k} \vec{p}_{i+1} \binom{k}{i} (1-u)^{k-i} u^i \]
Convex Hull Property

• The properties of the Bernstein polynomials ensure that all Bezier curves lie within the convex hull of their control points

• Hence, even though we do not interpolate all the data, we cannot be too far away

![Bezier curve and convex hull diagram]

Bezier curve

p_0, p_1, p_2, p_3

convex hull
Analysis

• Although the Bezier form is much better than the interpolating form, its derivatives are not continuous at join points

• Can we do better?
 - Go to higher order Bezier
 • More work
 • Derivative continuity still only approximate
 • Supported by OpenGL
 - Apply different conditions
 • Tricky without letting order increase
B-Splines

- Basis splines: use the data at $p = [p_{i-2} p_{i-1} p_i p_{i-1}]^T$ to define curve only between p_{i-1} and p_i
- Allows us to apply more continuity conditions to each segment
- For cubics, we can have continuity of function, first and second derivatives at join points
- Cost is 3 times as much work for curves
 - Add one new point each time rather than three
- For surfaces, we do 9 times as much work
Cubic B-spline

\[p(u) = u^T M_s p = b(u)^T p \]

\[
M_s = \begin{bmatrix}
1 & 4 & 1 & 0 \\
-3 & 0 & 3 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1 \\
\end{bmatrix}
\]
Blending Functions

\[
b(u) = \frac{1}{6} \begin{bmatrix} \frac{(1-u)^3}{u^3} \\ 4 - 6u^2 + 3u^3 \\ 1 + 3u + 3u^2 - 3u^2 \\ 3u \end{bmatrix}
\]

convex hull property
B-splines: Knot Selection

• Instead of working with the parameter space $0 \leq t \leq 1$, use $t_{\text{min}} \leq t_0 \leq t_1 \leq t_2 \ldots \leq t_{m-1} \leq t_{\text{max}}$

• The **knot points**
 - joint points between curve segments, Q_i
 - Each has a **knot value**
 - $m-1$ knots for $m+1$ points
Splines and Basis

• If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments.

• We can rewrite \(p(u) \) in terms of the data points as

\[
p(u) = \sum_{i=1}^{m-1} B_i(u)p_i
\]

defining the basis functions \(\{B_i(u)\} \)
In terms of the blending polynomials

\[B_i(u) = \begin{cases}
0 & u < i - 2 \\
b_0(u + 2) & i - 2 \leq u < i - 1 \\
b_1(u + 1) & i - 1 \leq u < i \\
b_2(u) & i \leq u < i + 1 \\
b_3(u - 1) & i + 1 \leq u < i + 2 \\
0 & u \geq i + 2
\end{cases} \]
B-splines: Cox-deBoor Recursion

• Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
• Let $B_{i,d}(t)$ denote the i-th blending function for a B-spline of degree d, then:

\[
B_{k,0}(t) = \begin{cases}
1, & \text{if } t_k \leq t < t_{k+1} \\
0, & \text{otherwise}
\end{cases}
\]

\[
B_{k,d}(t) = \frac{t - t_k}{t_{k+d} - t_k} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t)
\]
B-spline Blending Functions

\[B_{k,0}(t) \] is a step function that is 1 in the interval

\[B_{k,1}(t) \] spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)

\[B_{k,2}(t) \] spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0

\[B_{k,3}(t) \] is a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0

B-spline blending functions

Pics/Math courtesy of Dave Mount @ UMD-CP
B-spline Blending Functions for 2nd Degree Splines

• Note: can’t define a polynomial with these properties (both 0 and non-zero for ranges)
• Idea: subdivide the parameter space into \textit{intervals} and build a \textit{piecewise polynomial}
 - Each interval gets different polynomial function

\begin{align*}
B_0(u) & \quad u_k \\
B_1(u) & \quad u_{k+1} \\
B_2(u) & \quad u_{k+2} \\
B_3(u) & \quad u_{k+3}
\end{align*}

Pics/Math courtesy of Dave Mount @ UMD-CP
Generalizing Splines

• We can extend to splines of any degree
• Data and conditions do not have to be given at equally spaced values (the knots)
 - Nonuniform and uniform splines
 - Can have repeated knots
 • Can force spline to interpolate points
• Cox-deBoor recursion gives method of evaluation
NURBS

• Nonuniform Rational B-Spline curves and surfaces add a fourth variable \(w \) to \(x,y,z \)
 - Can interpret as weight to give more importance to some control data
 - Can also interpret as moving to homogeneous coordinate

• Requires a perspective division
 - NURBS act correctly for perspective viewing

• Quadrics are a special case of NURBS
Every Curve is a Bezier Curve

• We can render a given polynomial using the recursive method if we find control points for its representation as a Bezier curve

• Suppose that \(p(u) \) is given as an interpolating curve with control points \(q \)

\[
p(u) = u^T M_I q
\]

• There exist Bezier control points \(p \) such that

\[
p(u) = u^T M_B p
\]

• Equating and solving, we find \(p = M_B^{-1} M_I \)
Matrices

Interpolating to Bezier \[M_B^{-1} M_I = \begin{bmatrix}
1 & 0 & 0 & 0 \\
5 & -3 & 3 & -1 \\
6 & -2 & 2 & 3 \\
1 & -3 & 3 & -5 \\
3 & 2 & 0 & 6 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} \]

B-Spline to Bezier \[M_B^{-1} M_S = \begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1 \\
\end{bmatrix} \]
Example

These three curves were all generated from the same original data using Bezier recursion by converting all control point data to Bezier control points.

Bezier Interpolating B Spline
• Every polynomial is a Bezier polynomial for some set of control data
• We can use a Bezier renderer if we first convert the given control data to Bezier control data
 - Equivalent to converting between matrices
• Example: Interpolating to Bezier
\[M_B = M_I M_{BI} \]
Rendering Curves
Objectives

• Introduce methods to draw curves
 - Approximate with lines
 - Subdivision

• Derive the recursive method for evaluation of Bezier curves

• Learn how to convert all polynomial data to data for Bezier polynomials
Evaluating Polynomials

• Simplest method to render a polynomial curve is to evaluate the polynomial at many points and form an approximating polyline.
• For surfaces we can form an approximating mesh of triangles or quadrilaterals.
• Use Horner’s method to evaluate polynomials.

\[p(u) = c_0 + u(c_1 + u(c_2 + uc_3)) \]
- 3 multiplications/evaluation for cubic.
Basic case, with two points:

- Plotting a curve via repeated linear interpolation
 - Given \(\langle p_0, p_1, \ldots \rangle \) a sequence of control points
 - Simple case: Mapping a parameter \(u \) to the line \(\overline{p_0, p_1} \)

\[
p(u) = (1 - u)p_0 + up_1 \quad \text{for} \quad 0 \leq u \leq 1.
\]
The de Casteljau Algorithm

• The complete solution from the algorithm for three iterations:

\[p_{01}(u) = (1 - u)p_0 + up_1 \]
\[p_{11}(u) = (1 - u)p_1 + up_2. \]
\[p(u) = (1 - u)p_{01}(u) + up_{11}(u) \]

\[p_0 \]
\[p_1 \]
\[p_2 \]
\[p_{01} \]
\[p_{11} \]
\[p(u) \]

Final Value

Pics/Math courtesy of Dave Mount @ UMD-CP
The solution after four iterations:
The de Casteljau Algorithm

- Input: \(p_0, p_1, p_2 \ldots p_n \in \mathbb{R}^3, \ t \in \mathbb{R} \)
- Iteratively set:

\[
p_{ir}(t) = (1 - t)p_{i(r-1)}(t) + t \ p_{(i+1)(r-1)}(t) \\
\]

\[
\begin{align*}
& i = 0, \ldots, n - r \\
& r = 1, \ldots, n
\end{align*}
\]

and \(p_{i0}(t) = p_i \)

Then \(p_{0n}(t) \) is the point with parameter value \(t \) on the Bézier curve defined by the \(p_i \)'s
De Casteljau: Cubic Curve Animation
Subdivision

• Common in many areas of graphics, CAD, CAGD, vision
• Basic idea
 - primitives def’ d by control polygons
 - set of control points is not unique
 • more than one way to compute a curve
 - subdivision refines representation of an object by introducing more control points
• Allows for local modification
• Subdivide to pixel resolution
Bézier Curve Subdivision

• Subdivision allows display of curves at different/adaptive levels of resolution
• Rendering systems (OpenGL, ActiveX, etc) only display polygons or lines
• Subdivision generates the lines/facets that approximate the curve/surface
 - output of subdivision sent to renderer
deCasteljau Recursion

• We can use the convex hull property of Bezier curves to obtain an efficient recursive method that does not require any function evaluations
 - Uses only the values at the control points
• Based on the idea that “any polynomial and any part of a polynomial is a Bezier polynomial for properly chosen control data”
Splitting a Cubic Bezier

\(p_0, p_1, p_2, p_3 \) determine a cubic Bezier polynomial and its convex hull

Consider left half \(l(u) \) and right half \(r(u) \)
Since \(l(u) \) and \(r(u) \) are Bezier curves, we should be able to find two sets of control points \(\{l_0, l_1, l_2, l_3\} \) and \(\{r_0, r_1, r_2, r_3\} \) that determine them.
Convex Hulls

\{l_0, l_1, l_2, l_3\} and \{r_0, r_1, r_2, r_3\} each have a convex hull that is closer to \(p(u)\) than the convex hull of \{\(p_0, p_1, p_2, p_3\)\}. This is known as the variation diminishing property.

The polyline from \(l_0\) to \(l_3\) (=\(r_0\)) to \(r_3\) is an approximation to \(p(u)\). Repeating recursively we get better approximations.
Efficient Form

\[\begin{align*}
 l_0 &= p_0 \\
 r_3 &= p_3 \\
 l_1 &= \frac{1}{2}(p_0 + p_1) \\
 r_1 &= \frac{1}{2}(p_2 + p_3) \\
 l_2 &= \frac{1}{2}(l_1 + \frac{1}{2}(p_1 + p_2)) \\
 r_1 &= \frac{1}{2}(r_2 + \frac{1}{2}(p_1 + p_2)) \\
 l_3 &= r_0 = \frac{1}{2}(l_2 + r_1)
\end{align*} \]

Requires only shifts and adds!
Two basic ways:

• *Iterative evaluation* of $x(t)$, $y(t)$, $z(t)$ for incrementally spaced values of t
 - can’t easily control segment lengths and error

• *Recursive Subdivision*
 via de Casteljau, that stops when control points get sufficiently close to the curve
 - i.e. when the curve is nearly a straight line
Drawing Parametric Curves via Recursive Subdivision

• Idea: stop subdivision when segment is flat enough to be drawn w/ straight line

• Curve Flatness Test:
 - based on the convex hull
 - if d_2 and d_3 are both less than some ε, then the curve is declared flat
FYI: Computing the Distance from a Point to a Line

• Line is defined with two points

• Basic idea:
 - Project point P onto the line
 - Find the location of the projection

\[
d(P, L) = \frac{(y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}
\]
Drawing Parametric Curves via Recursive Subdivision

The Algorithm:

• \textbf{DrawCurveRecSub}(\textit{curve}, e)
 - If \textit{straight}(\textit{curve}, e) then \textbf{DrawLine}(\textit{curve})
 - Else
 • \textbf{SubdivideCurve}(\textit{curve}, \textit{LeftCurve}, \textit{RightCurve})
 • \textbf{DrawCurveRecSub}(\textit{LeftCurve}, e)
 • \textbf{DrawCurveRecSub}(\textit{RightCurve}, e)
Bezier and Spline Surfaces
Issues with 3D “mesh” formats

• Easy to acquire
• Easy to render
• Harder to model with
• Error prone
 - split faces, holes, gaps, etc
• Winged-Edge Data Structure (Weiler)
• Vertex
 - n edges
• Edge
 - 2 vertices
 - 2 faces
• Face
 - m edges
BRep Data Structure

- Vertex structure
 - X,Y,Z point
 - Pointers to n coincident edges

- Face structure
 - Pointers to m edges

- Edge structure
 - 2 pointers to end-point vertices
 - 2 pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge
Biparametric Surfaces

- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions
Biparametric Patch

• (u,v) pair maps to a 3D point on patch
Bicubic Surfaces

• Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \([s^3 \ s^2 \ s \ 1]\)

• For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:

\[
Q(s, t) = \begin{bmatrix}
 G_1(t) & G_2(t) & G_3(t) & G_4(t)
\end{bmatrix} \cdot M \cdot S
\]
Observations About Bicubic Surfaces

• For a fixed t_1, $Q(s, t_1)$ is a curve
• Gradually incrementing t_1 to t_2, we get a new curve
• The combination of these curves is a surface
• $G_i(t)$ are 3D curves
Each $G_i(t)$ is $G_i(t) = G_i \cdot M \cdot T$, where

$$G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}$$

Transposing $G_i(t)$, we get

$$G_i(t) = T^T \cdot M^T \cdot G_i^T$$

$$= T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$
Bicubic Surfaces

• Substituting $G_i(t)$ into $Q(s) = G \cdot M \cdot S$ we get $Q(s, t)$

• The g_{11}, etc. are the control points for the Bicubic surface patch:

$$Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S$$
Bicubic Surfaces

• Writing out \(Q(s,t) = T^T \cdot M^T \cdot G \cdot M \cdot S \) for \(0 \leq s, t \leq 1 \) gives

\[
x(s,t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S \\
y(s,t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S \\
z(s,t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S
\]
Interpolating Patch

\[p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^i v^j \]

Need 16 conditions to determine the 16 coefficients \(c_{ij} \)
Choose at \(u, v = 0, 1/3, 2/3, 1 \)
Matrix Form

Define \(\mathbf{v} = [1 \ v \ v^2 \ v^3]^T \)

\[
\mathbf{C} = [c_{ij}] \quad \mathbf{P} = [p_{ij}]
\]

\[
p(u,v) = \mathbf{u}^T \mathbf{C} \mathbf{v}
\]

If we observe that for constant \(u \ (v) \), we obtain interpolating curve in \(v \ (u) \), we can show

\[
\mathbf{C} = \mathbf{M}_I \mathbf{P} \mathbf{M}_I
\]

\[
p(u,v) = \mathbf{u}^T \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T \mathbf{v}
\]
Blending Patches

\[p(u, \nu) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(\nu) p_{ij} \]

Each \(b_i(u) b_j(\nu) \) is a blending patch

Shows that we can build and analyze surfaces from our knowledge of curves
Bézier Patches

• Bézier Surfaces (similar definition)

\[x(s, t) = T^T \cdot M_B^T \cdot G_{Bx} \cdot M_B \cdot S \]

\[y(s, t) = T^T \cdot M_B^T \cdot G_{By} \cdot M_B \cdot S \]

\[z(s, t) = T^T \cdot M_B^T \cdot G_{Bz} \cdot M_B \cdot S \]
Beziers Patches

Using same data array $\mathbf{P} = [\mathbf{p}_{ij}]$ as with interpolating form

$$\mathbf{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \mathbf{p}_{ij} = u^T \mathbf{M}_B \mathbf{P} \mathbf{M}_B^T v$$

Patch lies in convex hull
Beziers Blending Functions

\[b(u) = \begin{bmatrix} (1 - u)^3 \\ 3u(1 - u)^2 \\ 3u^2(1 - u) \\ u^3 \end{bmatrix} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)
Bézier Patches

• Expanding the summation

\[\tilde{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \tilde{p}_{ij} = \]

\[b_0(u) b_0(v) \tilde{p}_{00} + \]
\[b_0(u) b_1(v) \tilde{p}_{01} + \]
\[b_0(u) b_2(v) \tilde{p}_{02} + \]
\[b_0(u) b_3(v) \tilde{p}_{03} + \]
\[b_1(u) b_0(v) \tilde{p}_{10} + \]
\[etc. \]
Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs
• C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal.

• G^1 continuity achieved when cross-wise CPs are co-linear.
Bézier Surfaces: Example Utah Teapot

- Utah Teapot modeled with 306 3D control points that define 32 Bézier patches with G^1 continuity
B-Spline Patches

\[p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} = u^T M_S P M_S^T v \]

defined over only 1/9 of region
Faceting
Faceting
// This assumes that the vertices are in a 2D array, verts(i,j)

for i = 0 to (num_u − 2)
 for j = 0 to (num_v -2)
 triangle0 = (verts[i,j], verts[i+1,j], verts[i+1,j+1])
 triangle1 = (verts[i,j], verts[i+1,j+1], verts[i,j+1])
Faceting Overview

• Double loop that increments through the u and v parameters
 - Values between 0 and 1
• For each (u,v) pair calculate 3D point on patch. Keep track of linear index.
• This produces a 2-D array of 3D points on the patch and their indices to the linear array
• Define triangles that tessellate the patch
Normals

• For rendering we need the normals if we want to shade

- Can compute from parametric equations

\[\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v} \]

- Can use vertices of corner points to determine
Utah Teapot

- Most famous data set in computer graphics
- Widely available as a list of 306 3D vertices and the indices that define 32 Bezier patches
Beziers Surface: Example

- Increased facet resolution
- Rendered
Drawing Parametric Surfaces

• Usually done “patch by patch”
• Two choices
 - Draw/render *directly* from the parametric description
 - Approximate the surface with a *polygon* mesh, then draw/render the mesh
Direct Rendering

- Use a scan-line algorithm
 - Evaluate pixel by pixel
 - Problem: How to go from (x, y) “screen space” to point on the 3D patch
 - Easy for a planar polygon where we know max/min y, equations for edges, screen depth
 - Not as easy for parametric surfaces
Issues for Direct Rendering

• Max/Min y coords may not lie on boundaries
• Silhouette edges result from patch bulges
 - Need to track both silhouettes and boundaries
 • What if they intersect?
 • Note: patch edges need not be monotonic in x or y

• Idea: Scan convert patch \emph{plane-by-plane}, using scan planes instead of scan lines
Direct Scan Conversion of Patches

• Basic idea
 - Find intersection of patch with XZ plane
 • Producing a planar curve
 - Draw the curve
 • De Boor, D’ Casteljeau
 - Note: if doing rendering, one can compute pixel-by-pixel color values this way
 – Patch: \(x=X(u,v), \ y=Y(u,v), \ z=Z(u,v) \)
Two methods:

• **Object Space Conversion**
 - Techniques
 • Iterative evaluation
 • Uniform subdivision
 • Non-uniform subdivision
 - Resolution: depends on object space

• **Image Space Conversion**
 - Resolution: depends on pixels and screen
Object Space Conversion: Uniform Subdivision

Basic Procedure

• Cut parameter space into equal parts
• Find new points on the surface
• Recurse/Repeat “until done”
• Split squares into triangles
• Render
Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes
Image Space Conversion

• Idea: control subdivision based on screen criteria
 - Minimum pixel area
 • Stop when patch is basically one pixel
 - Screen flatness
 • Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 • Stop when edge is straight or size of pixel
How do I know if I’ve found a silhouette edge?

• If the viewing ray is tangent to the surface at the point it hits the surface!

\[N(X) \cdot L = 0 \]

- Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface
Silhouette Determination

\[\mathbf{N} \cdot \mathbf{L} = 0 \]

Brenner & Hughes, Brown U.

Xu, et al., U. of Minnesota

Kowalski, et al.
Suggestions for HW7

• Write a function that takes control points and a (u,v) pair and returns a 3D point on patch.
• Use formula or de Casteljau Algorithm to compute point
• Compute an array of points that lie on the patch with a double loop that increments through u and v, from 0 to 1
• Iterate over integers!
• This would be an (n+1) x (m+1) array, where n is the number of quads in the u direction and m is the number in the v direction
Suggestions for HW7

• Use a double loop to iterate through i & $j = 0$ to $n-1$

• For each (i, j) pair you define two triangles. The first has vertices $([i, j], [i+1, j], [i, j+1])$. The 2nd triangle is defined with vertices $([i+1, j], [i+1, j+1], [i, j+1])$.

• Now you have a mesh defined like an SMF model. Modify your HW6 code to render it.
Suggestions for HW7

• Implement the interface that allows the user to change n and m (the resolution of the mesh), and select and move the control points

• When these values are changed by the user, you'll need to regenerate the mesh

• Flip normals that face away from the eye point, so both sides of the mesh are shaded