Math Review

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

Geometric Preliminaries

• Affine Geometry
 - Scalars + Points + Vectors and their ops
• Euclidian Geometry
 - Affine Geometry lacks angles, distance
 - New op: Inner/Dot product, which gives
 • Length, distance, normalization
 • Angle, Orthogonality, Orthogonal projection
• Projective Geometry

Affine Geometry

• Affine Operations:
 - vector + scalar, vector + vector
 - point + point, point + vector

• Affine Combinations: \(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \)
 where \(v_1, v_2, \ldots, v_n \) are vectors and \(\sum \alpha_i = 1 \)

 Example: \(R = (1 - \alpha)P + \alpha Q \)

Mathematical Preliminaries

• Vector: an \(n \)-tuple of real numbers
• Vector Operations
 - Vector addition: \(u + v = w \)
 • Commutative, associative, identity element (0)
 - Scalar multiplication: \(c \cdot v \)

• Note: Vectors and Points are different
 - Can not add points
 - Can find the vector between two points

Linear Combinations & Dot Products

• A linear combination of the vectors \(v_1, v_2, \ldots, v_n \)
 is any vector of the form \(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \)
 where \(\alpha_i \) is a real number (i.e. a scalar)

• Dot Product: \(u \cdot v = \sum_{k=1}^{n} u_k v_k \)
 a real value \(u_1 v_1 + u_2 v_2 + \ldots + u_n v_n \) written as \(u \cdot v \)

Fun with Dot Products

• Euclidian Distance from \((x,y)\) to \((0,0)\)
 \(\sqrt{x^2 + y^2} \)
 in general: \(\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \)
 which is just: \(\sqrt{\mathbf{v} \cdot \mathbf{v}} \)

• This is also the length of vector \(\mathbf{v} \):
 \(|\mathbf{v}| \) or \(||\mathbf{v}|| \)

• Normalization of a vector: \(\mathbf{v} = \frac{\mathbf{v}}{||\mathbf{v}||} \)

• Orthogonal vectors: \(\mathbf{u} \cdot \mathbf{v} = 0 \)
Projections & Angles

- Angle between vectors: \(\theta = \operatorname{ang}(\vec{u}, \vec{v}) = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||}\right) \)
- Projection of vectors:
 \[\vec{u}_1 = \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}, \quad \vec{u}_2 = \vec{u} - \vec{u}_1. \]

Matrices and Matrix Operators

- A \(n \)-dimensional vector:
 \[\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \]
- Matrix Operations:
 - Addition/Subtraction
 - Identity
 - Multiplication
 - Scalar
 - Matrix Multiplication
- Implementation issue: Where does the index start? (0 or 1, it’s up to you…)

Matrix Multiplication

\[[C] = [A][B] \]
- Sum over rows & columns
- Recall: matrix multiplication is **not** commutative
- Identity Matrix:
 1s on diagonal
 0s everywhere else

\[\sum_{j=1}^{n} a_{ij}b_{ij} \]

Matrix Determinants

- A single real number
- Computed recursively:
 \[\det(A) = \sum_{j=1}^{n} A_{ij}(-1)^{i+j} M_{ij} \]
- Example:
 \[\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c & d \end{bmatrix} = ad - bc \]
- Uses:
 - Find vector ortho to two other vectors
 - Determine the plane of a polygon

Cross Product

- Given two non-parallel vectors, \(A \) and \(B \)
- \(A \times B \) calculates third vector \(C \) that is orthogonal to \(A \) and \(B \)
- \(A \times B = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x) \)

\[\begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

\[A \times B = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \]

Matrix Transpose & Inverse

- Matrix Transpose:
 Swap rows and cols:
 \[A = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \quad A^T = \begin{bmatrix} 2 & 8 \end{bmatrix} \]
- Facts about the transpose:
 - \((A^T)^T = A\)
 - \((A + B)^T = A^T + B^T\)
 - \((cA)^T = c(A^T)\)
 - \((AB)^T = B^TA^T\)
- Matrix Inverse: Given \(A \), find \(B \) such that
 \[AB = BA = I \quad B = A^{-1} \]
 (only defined for square matrices)
Derivatives of Polynomials

\[f(x) = \alpha x^n \]
\[\frac{df(x)}{dx} = \alpha nx^{n-1} \]
\[f(x) = 5x^3 \]
\[\frac{df(x)}{dx} = 15x^2 \]

Partial Derivatives of Polynomials

\[f(x, y) = \alpha x^n y^m \]
\[\frac{\partial f(x, y)}{\partial x} = \alpha nx^{n-1}y^m \]
\[f(x, y) = 5x^3 y^4 \]
\[\frac{\partial f(x, y)}{\partial x} = 15x^2 y^4 \]

Objectives

• Simple Shaders
 - Vertex shader
 - Fragment shaders
• Programming shaders with GLSL
• Finish first program

Vertex Shader Applications

• Moving vertices
 - Transformations
 - Modeling
 - Projection
 - Morphing
 - Wave motion
 - Fractals
 - Particle systems
• Lighting
 - More realistic shading models
 - Cartoon shaders

Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting (Gouraud shading)
Fragment Shader Applications

Texture mapping

Procedural textures environment bump mapping

Writing Shaders

• First programmable shaders were programmed in an assembly-like manner
• OpenGL extensions added vertex and fragment shaders
• Cg (C for graphics) C-like language for programming shaders
 - Works with both OpenGL and DirectX
 - Interface to OpenGL complex
• OpenGL Shading Language (GLSL)

GLSL

• OpenGL Shading Language
• Part of OpenGL 2.0 and ES 1.0 and up
• High level C-like language
• New data types
 - Matrices
 - Vectors
 - Samplers
• As of OpenGL 3.1, application must provide shaders

Execution Model

Simple Vertex Shader

```
// attribute vec4 vPosition;
void main(void)
{
  gl_Position = vPosition; // Simple pass-through
}
```

Use “in vec4 vPosition” for GLSL 1.5
Simple (Old) Fragment Program

```c
void main()
{
    gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
```

Every fragment simply colored red

Simple (New) Fragment Program

```c
out vec4 fragcolor;
void main(void)
{
    fragcolor = vec4(1.0, 0.0, 0.0, 1.0);
}
```

Every fragment simply colored red

Data Types

- **C types:** int, float, bool, uint, double
- **Vectors:**
 - float vec2, vec3, vec4
 - Also int (ivec), boolean (bvec), uvec, dvec
- **Matrices:** mat2, mat3, mat4
 - Stored by columns
 - Standard referencing m[row][column]
- **C++ style constructors**
 - vec3 a = vec3(1.0, 2.0, 3.0)
 - vec2 b = vec2(a)

Pointers

- There are no pointers in GLSL
- We can use C structs which can be copied back from functions
- Because matrices and vectors are basic types they can be passed into and out from GLSL functions, e.g. `mat3 func(mat3 a)`
- Variables passed by copying

Qualifiers

- GLSL has many of the same qualifiers such as `const` as C/C++
- Need others due to the nature of the execution model
- Variables can change
 - Once per primitive
 - Once per vertex
 - Once per fragment
 - At any time in the application
- Vertex attributes are interpolated by the rasterizer into fragment attributes

Attribute Qualifier

- Attribute-qualified variables can change at most once per vertex
- There are a few built-in variables such as `gl_Position` but most have been deprecated
- User defined (in application program)
 - `attribute float temperature`
 - `attribute vec3 velocity`
- Recent versions of GLSL use `in` and `out` qualifiers to get to and from shaders
Uniform Qualifier

- Variables that are constant for an entire primitive
- Can be changed in application and sent to shaders
- Cannot be changed in shader
- Used to pass information to shader such as the time or a bounding box of a primitive

Varying Qualifier

- Variables that are passed from vertex shader to fragment shader
- Automatically interpolated by the rasterizer
- With WebGL 1.0, GLSL uses the varying qualifier in both shaders
  ```glsl
  varying vec4 color;
  ```
- More recent versions of WebGL use `out` in vertex shader and `in` in the fragment shader
  ```glsl
  out vec4 color; //vertex shader
  in vec4 color;  // fragment shader
  ```

Our Naming Convention

- Attributes passed to vertex shader have names beginning with `v` (`vPosition, vColor`) in both the application and the shader
 - Note that these are different entities with the same name
- Varying variables begin with `f` (`fColor`) in both shaders
 - must have same name
- Uniform variables are can have any/the same name in application and shaders

Example: Vertex Shader

```glsl
attribute vec4 vPosition, vColor;
varying vec4 fColor;
void main()
{
    gl_Position = vPosition;
    fColor = vColor;
}
```

Corresponding Fragment Shader

```glsl
precision mediump float;

varying vec4 fColor;
void main()
{
    gl_FragColor = fColor;
}
```

Precision Declaration

- In GLSL for WebGL we must specify desired precision in fragment shaders
 - artifact inherited from OpenGL ES
 - ES must run on very simple embedded devices that may not support 32-bit floating point
 - All implementations must support mediump
 - No default for float in fragment shader
- Can use preprocessor directives (#ifdef) to check if highp supported and, if not, default to mediump
Pass Through Fragment Shader

```glsl
#ifdef GL_FRAGMENT_PRECISION_HIGH
  precision highp float;
#else
  precision mediump float;
#endif

varying vec4 fcolor;
void main(void)
{
  gl_FragColor = fcolor;
}
```

Required Fragment Shader (New)

```glsl
precision highp float;

in vec4 color_out;
out vec4 fragcolor;
void main(void)
{
  fragcolor = color_out;
}
```

Sending Colors from Application

```javascript
var cBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, cBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(colors), gl.STATIC_DRAW );

var vColor = gl.getAttribLocation( program, "vColor" );
gl.vertexAttribPointer( vColor, 3, gl.FLOAT, false, 0 , 0 );
gl.enableVertexAttribArray( vColor );
```

Sending a Uniform Variable

```javascript
// in application
vec4 color = vec4(1.0, 0.0, 0.0, 1.0);
colorLoc = gl.getUniformLocation( program, "color" );
gl.uniform4f( colorLoc, color);

// in fragment shader (similar in vertex shader)
uniform vec4 color;
void main()
{
  gl_FragColor = color;
}
```

User-defined functions

- Similar to C/C++ functions
- Cannot be recursive
- Specification of parameters

```javascript
returnType MyFunction(in float inputValue, out int outputValue, inout float inAndOutValue);
```
Passing values

- call by value-return
- Variables are copied in
- Returned values are copied back
- Three possibilities
 - in
 - out
 - inout
 - No qualifier → in

Operators and Functions

- Standard C functions
 - Trigonometric
 - Arithmetic
 - Normalize, reflect, length
- Overloading of vector and matrix types
 \[\text{mat4 a; vec4 b, c, d; c = b * a; // a column vector stored as a 1d array} \]
 \[d = a * b; // a row vector stored as a 1d array \]

Swizzling and Selection

- Can refer to array elements by element using [] or selection (.) operator with
 \[x, y, z, w \]
 \[r, g, b, a \]
 \[s, t, p, q \]
 \[a[2], a.b, a.z, a.p \text{ are the same} \]
- Swizzling operator lets us manipulate components
 \[\text{vec4 a, b; } \]
 \[a.yz = \text{vec2(1.0, 2.0);} \]
 \[a.xw = b.yy; \]
 \[b = a.yzwx; \]

Objectives

- Expanding primitive set
- Adding color
- Vertex attributes

WebGL Primitives

- \[\text{GL_POINTS} \]
- \[\text{GL_LINES} \]
- \[\text{GL_LINE_STRIP} \]
- \[\text{GL_LINE_LOOP} \]
- \[\text{GL_TRIANGLES} \]
- \[\text{GL_TRIANGLE_STRIP} \]
- \[\text{GL_TRIANGLE_FAN} \]
Polygon Issues

- WebGL will only display triangles
 - Simple: edges cannot cross
 - Convex: All points on line segment between two points in a polygon are also in the polygon
 - Flat: all vertices are in the same plane
- Application program must tessellate a polygon into triangles (triangulation)
- OpenGL 4.1 contains a tessellator

Polygon Testing

- Conceptually simple to test for simplicity and convexity
- Time consuming
- Earlier versions assumed both and left testing to the application
- Present version only renders triangles
- Need algorithm to triangulate an arbitrary polygon

Good and Bad Triangles

- Long thin triangles render badly
- Equilateral triangles render well
- Maximize minimum angle
- Delaunay triangulation for unstructured points

Triangularization

- Start with abc, remove b, then acd,

Non-convex (concave)

Recursive Division

- There are a variety of recursive algorithms for subdividing concave polygons
Attributes

- Attributes determine the appearance of objects
 - Color (points, lines, polygons)
 - Size and width (points, lines)
 - Stipple pattern (lines, polygons)
 - Polygon mode
 - Display as filled: solid color or stipple pattern
 - Display edges
 - Display vertices
- Only a few (`glPointSize`) are supported by WebGL functions

RGB color

- Each color component is stored separately in the frame buffer
- Usually 8 bits per component in buffer
- Color values can range from 0.0 (none) to 1.0 (all) using floats or over the range from 0 to 255 using unsigned bytes

Indexed Color

- Colors are indices into tables of RGB values
- Requires less memory
 - indices usually 8 bits
 - not as important now
 - Memory inexpensive
 - Need more colors for shading

Smooth Color

- Default is smooth shading
 - Rasterizer interpolates vertex colors across visible polygons
- Alternative is flat shading
 - Color of first vertex determines fill color
 - Handle in shader

Setting Colors

- Colors are ultimately set in the fragment shader but can be determined in either shader or in the application
- Application color: pass to vertex shader as a uniform variable (next lecture) or as a vertex attribute
- Vertex shader color: pass to fragment shader as varying variable (next lecture)
- Fragment color: can alter via shader code