Math Review

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Geometric Preliminaries

• **Affine Geometry**
 - Scalars + Points + Vectors and their ops

• **Euclidian Geometry**
 - Affine Geometry lacks angles, distance
 - New op: Inner/Dot product, which gives
 • Length, distance, normalization
 • Angle, Orthogonality, Orthogonal projection

• **Projective Geometry**
Affine Geometry

• Affine Operations:
 - **Affine Combinations**: $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$
 where v_1, v_2, \ldots, v_n are vectors and $\sum_i \alpha_i = 1$
 Example: $R = (1 - \alpha)P + \alpha Q$

Example:
- $R = P + \frac{2}{3}(Q - P)$
- $\frac{2}{3}Q + \frac{1}{3}P$
- $\alpha < 0$ \[Q \]
- $0 < \alpha < 1$ \[Q \]
- $\alpha > 1$ \[Q \]
Mathematical Preliminaries

- **Vector**: an \(n \)-tuple of real numbers
- **Vector Operations**
 - Vector addition: \(u + v = w \)
 - Commutative, associative, identity element (0)
 - Scalar multiplication: \(cv \)
- **Note**: Vectors and Points are different
 - Can not add points
 - Can find the vector between two points
Linear Combinations &
Dot Products

• A linear combination of the vectors v_1, v_2, \ldots, v_n
is any vector of the form
 $$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$
where α_i is a real number (i.e. a scalar)

• Dot Product: $u \cdot v = \sum_{k=1}^{n} u_k v_k$
a real value $u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$ written as $u \cdot v$
Fun with Dot Products

- **Euclidian Distance from** (x,y) to $(0,0)$
 \[
 \sqrt{x^2 + y^2} \quad \text{in general:} \quad \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}
 \]
 which is just:
 \[
 \sqrt{\vec{x} \cdot \vec{x}}
 \]
- **This is also the length of vector** \vec{v}:
 \[
 |\vec{v}| \quad \text{or} \quad |\vec{v}|
 \]
- **Normalization** of a vector: \[
 \hat{\vec{v}} = \frac{\vec{v}}{|\vec{v}|}.
 \]
- **Orthogonal vectors**: \[
 \vec{u} \cdot \vec{v} = 0
 \]
Projections & Angles

- **Angle between vectors**, \(\theta \)

\[
\theta = \text{ang}(\vec{u}, \vec{v}) = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \right) = \cos^{-1}(\hat{u} \cdot \hat{v}).
\]

- **Projection of vectors**

\[
\vec{u}_1 = \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}
\]

\[
\vec{u}_2 = \vec{u} - \vec{u}_1.
\]
Matrices and Matrix Operators

• A n-dimensional vector:

\[
\begin{bmatrix}
x_1 \\
\vdots \\
\vdots \\
x_n
\end{bmatrix}
\]

• Matrix Operations:
 - Addition/Subtraction
 - Identity
 - Multiplication
 • Scalar
 • Matrix Multiplication

• Implementation issue:
 Where does the index start?
 (0 or 1, it’s up to you…)

\[
A + B = B + A
\]
\[
A + (B + C) = (A + B) + C
\]
\[
(cd)A = c(dA)
\]
\[
1A = A
\]
\[
c(A + B) = cA + cB
\]
\[
(c + d)A = cA + dA
\]
Matrix Multiplication

- \([C] = [A][B]\)
- Sum over rows & columns
- Recall: matrix multiplication is not commutative
- **Identity Matrix:**
 - 1s on diagonal
 - 0s everywhere else

 \[
c_{ij} = \sum_{s=1}^{m} a_{is}b_{sj}
\]

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[
\begin{bmatrix}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{41} & c_{42} & c_{43} & c_{44}
\end{bmatrix}
\]
Matrix Determinants

• A single real number
• Computed recursively

\[
\det(A) = \sum_{j=1}^{n} A_{i,j} (-1)^{i+j} M_{i,j}
\]

• Example:

\[
\det\begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - bc
\]

• Uses:
 - Find vector ortho to two other vectors
 - Determine the plane of a polygon
Cross Product

• Given two non-parallel vectors, A and B
• A × B calculates third vector C that is orthogonal to A and B
• \[A \times B = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x) \]

\[
A \times B = \begin{vmatrix}
\vec{x} & \vec{y} & \vec{z} \\
\hat{a}_x & \hat{a}_y & \hat{a}_z \\
\hat{b}_x & \hat{b}_y & \hat{b}_z \\
\end{vmatrix}
\]
Matrix Transpose & Inverse

• **Matrix Transpose:**
 Swap rows and cols:

 \[
 A = \begin{bmatrix}
 2 \\
 8 \\
 \end{bmatrix} \quad A^T = \begin{bmatrix}
 2 & 8 \\
 \end{bmatrix}
 \]

 • **Facts about the transpose:**
 \((A^T)^T = A \)
 \((A + B)^T = A^T + B^T \)
 \((cA)^T = c(A^T) \)
 \((AB)^T = B^T A^T \)

• **Matrix Inverse:**
 Given \(A \), find \(B \) such that

 \[
 AB = BA = I \quad B \Rightarrow A^{-1}
 \]

 (only defined for square matrices)
Derivatives of Polynomials

\[f(x) = \alpha x^n \]
\[\frac{df(x)}{dx} = \alpha nx^{n-1} \]
\[f(x) = 5x^3 \]
\[\frac{df(x)}{dx} = 15x^2 \]
Partial Derivatives of Polynomials

\[f(x, y) = \alpha x^n y^m \]

\[\frac{\partial f(x, y)}{\partial x} = \alpha n x^{n-1} y^m \]

\[f(x, y) = 5x^3 y^4 \]

\[\frac{\partial f(x, y)}{\partial x} = 15x^2 y^4 \]
Programming with OpenGL
Part 3: Shaders

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Simple Shaders
 - Vertex shader
 - Fragment shaders
• Programming shaders with GLSL
• Finish first program
Vertex Shader Applications

- Moving vertices
 - Transformations
 - Modeling
 - Projection
 - Morphing
 - Wave motion
 - Fractals
 - Particle systems

- Lighting
 - More realistic shading models
 - Cartoon shaders
Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting
(Gouraud shading)

per fragment lighting
(Phong shading)
Fragment Shader Applications

Texture mapping

Procedural textures environment mapping bump mapping
• First programmable shaders were programmed in an assembly-like manner
• OpenGL extensions added vertex and fragment shaders
• Cg (C for graphics) C-like language for programming shaders
 - Works with both OpenGL and DirectX
 - Interface to OpenGL complex
• OpenGL Shading Language (GLSL)
GLSL

- OpenGL Shading Language
- Part of OpenGL 2.0 and ES 1.0 and up
- High level C-like language
- New data types
 - Matrices
 - Vectors
 - Samplers
- As of OpenGL 3.1, application must provide shaders
Execution Model

Vertex data
Shader Program

Application Program

glDrawArrays

Vertex Shader

GPU

Primitive Assembly

Vertices → Vertex Processor → Clipper and Primitive Assembler → Rasterizer → Fragment Processor → Pixels
Simple Vertex Shader

input from application (GLSL 1.4)

attribute vec4 vPosition;

void main(void)
{
 gl_Position = vPosition; Simple pass-through
}

built in variable

Use “in vec4 vPosition” for GLSL 1.5
Execution Model

Shader Program

Rasterizer → Fragment Shader → Frame Buffer

Fragment Color

void main()
{
 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

Every fragment simply colored red
Simple (New) Fragment Program

```glsl
out vec4 fragcolor;
void main(void)
{
    fragcolor = vec4(1.0, 0.0, 0.0, 1.0);
}
```

Every fragment simply colored red
Data Types

- **C types**: int, float, bool, uint, double
- **Vectors**:
 - float vec2, vec3, vec4
 - Also int (ivec), boolean (bvec), uvec, dvec
- **Matrices**: mat2, mat3, mat4
 - Stored by columns
 - Standard referencing m[row][column]
- **C++ style constructors**
 - vec3 a = vec3(1.0, 2.0, 3.0)
 - vec2 b = vec2(a)
Pointers

• There are no pointers in GLSL
• We can use C structs which can be copied back from functions
• Because matrices and vectors are basic types they can be passed into and out from GLSL functions, e.g.

 \[\text{mat3 func(mat3 } a) \]

• variables passed by copying
Qualifiers

- GLSL has many of the same qualifiers such as \texttt{const} as C/C++
- Need others due to the nature of the execution model
- Variables can change
 - Once per primitive
 - Once per vertex
 - Once per fragment
 - At any time in the application
- Vertex attributes are interpolated by the rasterizer into fragment attributes
Attribute Qualifier

• Attribute-qualified variables can change at most once per vertex
• There are a few built in variables such as `gl_Position` but most have been deprecated
• User defined (in application program)
 - `attribute float temperature`
 - `attribute vec3 velocity`
 - recent versions of GLSL use `in` and `out` qualifiers to get to and from shaders
Uniform Qualifier

- Variables that are constant for an entire primitive
- Can be changed in application and sent to shaders
- Cannot be changed in shader
- Used to pass information to shader such as the time or a bounding box of a primitive
Varying Qualifier

• Variables that are passed from vertex shader to fragment shader
• Automatically interpolated by the rasterizer
• With WebGL, GLSL uses the varying qualifier in both shaders

 varying vec4 color;

• More recent versions of WebGL use `out` in vertex shader and `in` in the fragment shader

 out vec4 color; // vertex shader

 in vec4 color; // fragment shader
Our Naming Convention

- Attributes passed to vertex shader have names beginning with v (vPosition, vColor) in both the application and the shader
 - Note that these are different entities with the same name
- Varying variables begin with f (fColor) in both shaders
 - must have same name
- Uniform variables are can have any/the same name in application and shaders
Example: Vertex Shader

```shadex
attribute vec4 vPosition, vColor;
varying vec4 fColor;
void main()
{
  gl_Position = vPosition;
  fColor = vColor;
}
```
Corresponding Fragment Shader

precision mediump float;

varying vec4 fColor;
void main()
{
 gl_FragColor = fColor;
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015
Precision Declaration

- In GLSL for WebGL we must specify desired precision in fragment shaders
 - artifact inherited from OpenGL ES
 - ES must run on very simple embedded devices that may not support 32-bit floating point
 - All implementations must support mediump
 - No default for float in fragment shader

- Can use preprocessor directives (#ifdef) to check if highp supported and, if not, default to mediump
Pass Through Fragment Shader

```cpp
#ifdef GL_FRAGMENT_SHADER_PRECISION_HIGH
    precision highp float;
#else
    precision mediump float;
#endif

varying vec4 fcolor;
void main(void)
{
    gl_FragColor = fcolor;
}
```
Another (New) Example: Vertex Shader

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
in vec4 vPosition;
out vec4 color_out;
void main(void)
{
 gl_Position = vPosition;
 color_out = vPosition.x * red;
}
precision highp float;

in vec4 color_out;
out vec4 fragcolor;
void main(void)
{
 fragcolor = color_out;
}

var cBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, cBuffer);
gl.bufferData(gl.ARRAY_BUFFER, flatten(colors),
 gl.STATIC_DRAW);

var vColor = gl.getAttribLocation(program, "vColor");
gl.vertexAttribPointer(vColor, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vColor);
Sending a Uniform Variable

// in application

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);
colorLoc = gl.getUniformLocation(program, "color");
gl.uniform4f(colorLoc, color);

// in fragment shader (similar in vertex shader)

uniform vec4 color;
void main()
{
 gl_FragColor = color;
}
User-defined functions

• Similar to C/C++ functions
• Except
 - Cannot be recursive
 - Specification of parameters

returnType MyFunction(in float inputValue, out int outputValue, inout float inAndOutValue);
Passing values

- call by \texttt{value-return}
- Variables are copied in
- Returned values are copied back
- Three possibilities
 - \texttt{in}
 - \texttt{out}
 - \texttt{inout}
 - No qualifier \rightarrow \texttt{in}
Operators and Functions

• Standard C functions
 - Trigonometric
 - Arithmetic
 - Normalize, reflect, length

• Overloading of vector and matrix types
 mat4 a;
 vec4 b, c, d;
 c = b*a; // a column vector stored as a 1d array
 d = a*b; // a row vector stored as a 1d array
Swizzling and Selection

• Can refer to array elements by element using [] or selection (.) operator with
 - x, y, z, w
 - r, g, b, a
 - s, t, p, q
 - a[2], a.b, a.z, a.p are the same

• **Swizzling** operator lets us manipulate components

```cpp
vec4 a, b;
a.yz = vec2(1.0, 2.0);
a.xw = b.yy;
b = a.yxzw;
```
Programming with OpenGL
Part 4: Color and Attributes
Objectives

- Expanding primitive set
- Adding color
- Vertex attributes
OpenGL Primitives
Polygon Issues

- WebGL will only display triangles
 - Simple: edges cannot cross
 - Convex: All points on line segment between two points in a polygon are also in the polygon
 - Flat: all vertices are in the same plane

- Application program must tessellate a polygon into triangles (triangulation)

- OpenGL 4.1 contains a tessellator

Polygon Testing

- Conceptually simple to test for simplicity and convexity
- Time consuming
- Earlier versions assumed both and left testing to the application
- Present version only renders triangles
- Need algorithm to triangulate an arbitrary polygon
Good and Bad Triangles

• Long thin triangles render badly

• Equilateral triangles render well
• Maximize minimum angle
• Delaunay triangulation for unstructured points
Triangularization

• Convex polygon

• Start with abc, remove b, then acd,
Non-convex (concave)
Recursive Division

- There are a variety of recursive algorithms for subdividing concave polygons
Attributes

• Attributes determine the appearance of objects
 - Color (points, lines, polygons)
 - Size and width (points, lines)
 - Stipple pattern (lines, polygons)
 - Polygon mode
 • Display as filled: solid color or stipple pattern
 • Display edges
 • Display vertices

• Only a few (glPointSize) are supported by WebGL functions
RGB color

- Each color component is stored separately in the frame buffer
- Usually 8 bits per component in buffer
- Color values can range from 0.0 (none) to 1.0 (all) using floats or over the range from 0 to 255 using unsigned bytes
Indexed Color

• Colors are indices into tables of RGB values
• Requires less memory
 - indices usually 8 bits
 - not as important now
 • Memory inexpensive
 • Need more colors for shading
Smooth Color

• Default is *smooth* shading
 - Rasterizer interpolates vertex colors across visible polygons
• Alternative is *flat shading*
 - Color of first vertex determines fill color
 - Handle in shader
Setting Colors

• Colors are ultimately set in the fragment shader but can be determined in either shader or in the application.
 • Application color: pass to vertex shader as a uniform variable (next lecture) or as a vertex attribute.
 • Vertex shader color: pass to fragment shader as varying variable (next lecture).
 • Fragment color: can alter via shader code.