Objectives

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space \(p=(x,y,z) \)
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
- Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Transformations to Change Coordinate Systems

- 4 coordinate systems
 - 1 point \(P \)
 - \(M_{1\to 2} = T(4,2) \)
 - \(M_{2\to 1} = T(2,3) \cdot S(0.5,0.5) \)
 - \(M_{3\to 4} = T(6.7,1.8) \cdot R(45^\circ) \)

Scalars

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutativity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties
Vectors

• Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
• Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

• Every vector has an inverse
 - Same magnitude but points in opposite direction
• Every vector can be multiplied by a scalar
• There is a zero vector
 - Zero magnitude, undefined orientation
• The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

• Mathematical system for manipulating vectors
• Operations
 - Scalar-vector multiplication: \(\mathbf{u} = \alpha \mathbf{v} \)
 - Vector-vector addition: \(\mathbf{w} = \mathbf{u} + \mathbf{v} \)
• Expressions such as
 \[\mathbf{v} = \mathbf{u} + 2 \mathbf{w} - 3 \mathbf{r} \]
 Make sense in a vector space

Vectors Lack Position

• These vectors are identical
 - Same length and magnitude
• Vectors spaces insufficient for geometry
 - Need points

Points

• Location in space
• Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

• Point + a vector space
• Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
• For any point define
 - \(-1 \cdot \mathbf{P} = \mathbf{P} \)
 - \(0 \cdot \mathbf{P} = \mathbf{0} \) (zero vector)
Lines

- Consider all points of the form \(P(\alpha) = P_0 + \alpha \cdot d \)
- Set of all points that pass through \(P_0 \) in the direction of the vector \(d \)

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: \(y = mx + h \)
 - Implicit: \(ax + by + c = 0 \)
 - Parametric:
 \[
 x(\alpha) = \alpha x_0 + (1 - \alpha)x_1 \\
 y(\alpha) = \alpha y_0 + (1 - \alpha)y_1
 \]

Rays and Line Segments

- If \(\alpha \geq 0 \), then \(P(\alpha) \) is the ray leaving \(P_0 \) in the direction \(d \)
- If we use two points to define \(v \), then
 \[
 P(\alpha) = Q + \alpha (R - Q) = Q + \alpha v
 \]
 \[
 = aR + (1 - a)Q
 \]
- For \(0 \leq \alpha \leq 1 \) we get all the points on the line segment joining \(R \) and \(Q \)

Convexity

- An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

Affine Sums

- Consider the “sum” \(P = \alpha_1 P_1 + \alpha_2 P_2 + \ldots + \alpha_n P_n \)
 - If \(\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1 \)
 - in which case we have the affine sum of the points \(P_1, P_2, \ldots, P_n \)
- If, in addition, \(\alpha \geq 0 \), we have the convex hull of \(P_1, P_2, \ldots, P_n \)

Convex Hull

- Smallest convex object containing \(P_1, P_2, \ldots, P_n \)
- Formed by “shrink wrapping” points
Curves and Surfaces

- Curves are one parameter entities of the form \(P(\alpha) \) where the function is nonlinear.
- Surfaces are formed from two-parameter functions \(P(\alpha, \beta) \).
 - Linear functions give planes and polygons.

Planes

- A plane can be defined by a point and two vectors or by three points.

\[P(\alpha, \beta) = R + \alpha u + \beta v \]

\[P(\alpha, \beta) = R + \alpha (Q - R) + \beta (P - R) \]

Triangles

- A triangle can be defined by three points.

\[P(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 P + \alpha_2 Q + \alpha_3 R \]

where

\[\alpha_1 + \alpha_2 + \alpha_3 = 1 \]

\[\alpha_i \geq 0 \]

The representation is called the barycentric coordinate representation of \(P \).

Barycentric Coordinates

- Triangle is convex so any point inside can be represented as an affine sum.

Normals

- Every plane has a vector \(n \) normal (perpendicular, orthogonal) to it.
- From point-two vector form \(P(\alpha, \beta) = R + \alpha u + \beta v \), we know we can use the cross product to find \(n = u \times v \) and the equivalent form.

\[(P(\alpha) - P) \cdot n = 0 \]
Objectives

- Introduce concepts such as dimension and basis
- Introduce coordinate systems for representing vector spaces and frames for representing affine spaces
- Discuss change of frames and bases
- Introduce homogeneous coordinates

Linear Independence

- A set of vectors v_1, v_2, \ldots, v_n is linearly independent if $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$ iff $\alpha_1 = \alpha_2 = \ldots = 0$
- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis v_1, v_2, \ldots, v_n, any vector v can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$
 where the $\{\alpha_i\}$ are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can’t answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$
- The list of scalars $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is the representation of v with respect to the given basis
- We can write the representation as a row or column array of scalars
 $$a = \begin{bmatrix} \alpha_1 & \alpha_2 & \ldots & \alpha_n \end{bmatrix}^T$$

Example

- $v = 2v_1 + 3v_2 - 4v_3$
- $a = \begin{bmatrix} 2 & 3 & -4 \end{bmatrix}^T$
- Note that this representation is with respect to a particular basis
- For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis
Coordinate Systems

• Which is correct?
 \[\begin{align*}
 \vec{v} & \quad \text{or} \quad \vec{v} \\
 \end{align*} \]

• Both are because vectors have no fixed location

Frames

• A coordinate system is insufficient to represent points
• If we work in an affine space we can add a single point, the origin, to the basis vectors to form a frame

Representation in a Frame

• Frame determined by \((P_0, v_1, v_2, v_3)\)
• Within this frame, every vector can be written as
 \[\vec{v} = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \]
• Every point can be written as
 \[P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n \]

A Single Representation

If we define 0\(\cdot P = 0\) and 1\(\cdot P = P\) then we can write
\[\begin{align*}
 \vec{v} & = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \\
 P & = P_0 + \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n \\
\end{align*} \]
Thus we obtain the four-dimensional homogeneous coordinate representation
\[\begin{align*}
 \vec{v} & = [\alpha_1 \alpha_2 \alpha_3 0]^T \\
 \vec{p} & = [\beta_1 \beta_2 \beta_3 1]^T \\
\end{align*} \]

Confusing Points and Vectors

Consider the point and the vector
\[\begin{align*}
 P & = P_0 + \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n \\
 \vec{v} & = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \\
\end{align*} \]
They appear to have the similar representations
\[\begin{align*}
 \vec{p} & = [\beta_1 \beta_2 \beta_3]^T \\
 \vec{v} & = [\alpha_1 \alpha_2 \alpha_3]^T \\
\end{align*} \]
which confuses the point with the vector
A vector has no position

Vector can be placed anywhere
point fixed

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point \([x, y, z]^{T}\) is given as
\[\vec{p} = [x', y', z', w']^{T} = [x x y z w]^{T} \]
We return to a three dimensional point (for \(w=0\)) by
\[\begin{align*}
 x & = x' / w \\
 y & = y' / w \\
 z & = z' / w \\
\end{align*} \]
If \(w=0\), the representation is that of a vector
Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions
For \(w=1\), the representation of a point is \([x, y, z, 1]^{T}\)
Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4x4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain $w=0$ for vectors and $w=1$ for points
 - For perspective we need a perspective division

Change of Coordinate Systems

- Consider two representations of the same vector with respect to two different bases. The representations are

 \[\mathbf{a} = [\alpha_1, \alpha_2, \alpha_3] \]
 \[\mathbf{b} = [\beta_1, \beta_2, \beta_3] \]

 where

 \[\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = [\alpha_1, \alpha_2, \alpha_3] \mathbf{v}^T \]
 \[= \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \beta_3 \mathbf{u}_3 = [\beta_1, \beta_2, \beta_3] \mathbf{u}^T \]

Representing second basis in terms of first

Each of the basis vectors, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, are vectors that can be represented in terms of the first basis

\[\mathbf{u}_1 = g_{11} \mathbf{v}_1 + g_{12} \mathbf{v}_2 + g_{13} \mathbf{v}_3 \]
\[\mathbf{u}_2 = g_{21} \mathbf{v}_1 + g_{22} \mathbf{v}_2 + g_{23} \mathbf{v}_3 \]
\[\mathbf{u}_3 = g_{31} \mathbf{v}_1 + g_{32} \mathbf{v}_2 + g_{33} \mathbf{v}_3 \]

The coefficients define a 3x3 matrix and the bases can be related by

\[\mathbf{a} = \mathbf{M} \mathbf{b} \]

see text for numerical examples

Change of Frames

- We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:

\[(\mathbf{P}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \] \[(\mathbf{Q}_0, \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) \]

- Any point or vector can be represented in either frame
- We can represent $\mathbf{Q}_0, \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ in terms of $\mathbf{P}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$

Representing One Frame in Terms of the Other

Extending what we did with change of bases

\[\mathbf{u}_1 = g_{11} \mathbf{v}_1 + g_{12} \mathbf{v}_2 + g_{13} \mathbf{v}_3 \]
\[\mathbf{u}_2 = g_{21} \mathbf{v}_1 + g_{22} \mathbf{v}_2 + g_{23} \mathbf{v}_3 \]
\[\mathbf{u}_3 = g_{31} \mathbf{v}_1 + g_{32} \mathbf{v}_2 + g_{33} \mathbf{v}_3 \]
\[\mathbf{Q}_0 = g_{41} \mathbf{v}_1 + g_{42} \mathbf{v}_2 + g_{43} \mathbf{v}_3 + g_{44} \mathbf{P}_0 \]

defining a 4x4 matrix

\[\mathbf{M} = \begin{bmatrix}
1 & 12 & 13 & 0 \\
21 & 22 & 23 & 0 \\
31 & 32 & 33 & 0 \\
41 & 42 & 43 & 1
\end{bmatrix} \]

Working with Representations

Within the two frames any point or vector has a representation of the same form

\[a = [a_1 \ a_2 \ a_3 \ a_4] \] in the first frame
\[b = [b_1 \ b_2 \ b_3 \ b_4] \] in the second frame

where \(a_4 = b_4 = 1 \) for points and \(a_4 = b_4 = 0 \) for vectors

\[a = M b \]

The matrix \(M \) is 4 x 4 and specifies an affine transformation in homogeneous coordinates.

The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same (\(M = I \))

Moving the Camera

If objects are on both sides of \(z=0 \), we must move camera frame

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]