Computer Viewing

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

Objectives

- Introduce the mathematics of projection
- Describe WebGL projection functions in MV.js
- Look at alternate viewing APIs

From the Beginning

- In the beginning:
 - fixed function pipeline
 - Model-View and Projection Transformation
 - Predefined frames: model, object, camera, clip, ndc, window
- After deprecation
 - pipeline with programmable shaders
 - no transformations
 - clip, ndc window frames
- MV.js reintroduces original capabilities

The WebGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity (almost)
Moving the Camera Frame

• If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation \((\text{translate}(0.0,0.0,-d))\)

- d > 0

Moving Camera back from Origin

frames after translation by \(-d\)

default frames

frames after translation by \(-d\)

default frames

World is actually being moved relative to camera frame.

Moving the Camera

• We can move the camera to any desired position by a sequence of rotations and translations

• Example: side view
 - Rotate the scene
 - Move it away from origin
 - Model-view matrix \(C = TR\)

WebGL code

• Remember that last transformation specified is first to be applied

// Using MV.js
var t = translate(0.0, 0.0, -d);
var ry = rotateY(-90.0);
var m = mult(t, ry);

// or
var m = mult(translate (0.0, 0.0, -d),
rotateY(-90.0));

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.
LookAt Function

\[\text{LookAt}(\text{eye}, \text{at}, \text{up}) \]

- eye - location of camera
- at - look-at point
- up - up vector

\[\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \]

\[\begin{bmatrix} x_p \\ y_p \\ w_p \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

In practice, we can let \(M = I \) and set the \(z \) term to zero later.

The LookAt Function

- The GLU library contained the function \texttt{gluLookAt} to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
 - Should not be parallel to look-at direction
- Replaced by \texttt{lookAt()} in MV.js
 - Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

\[
\text{var eye} = \text{vec3}(1.0, 1.0, 1.0); \\
\text{var at} = \text{vec3}(0.0, 0.0, 0.0); \\
\text{var up} = \text{vec3}(0.0, 1.0, 0.0); \\
\text{var mv} = \text{lookAt}(\text{eye}, \text{at}, \text{up});
\]

Other Viewing APIs

- The \texttt{lookAt()} function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles

Projections and Normalization

- The default projection in the eye (camera) frame is orthographic
- For points within the default view volume
 \[x_p = x \]
 \[y_p = y \]
 \[z_p = 0 \]
- Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

\[
\begin{array}{c}
\begin{bmatrix}
\text{x}_{p} \\
\text{y}_{p} \\
\text{z}_{p} \\
\text{w}_{p}
\end{bmatrix}
= \begin{bmatrix}
\text{x} \\
\text{y} \\
0 \\
1
\end{bmatrix} \\
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\end{array}
\]

In practice, we can let \(M = I \) and set the \(z \) term to zero later.
Simple Perspective

- Center of projection at the origin
- Projection plane \(z = d \), \(d < 0 \)

Perspective Equations

Consider top and side views

\[
\begin{align*}
x_p &= \frac{x}{z/d} \\
y_p &= \frac{y}{z/d} \\
z_p &= d
\end{align*}
\]

Homogeneous Coordinate Form

Consider \(q = Mp \) where

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]

\[
p = \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} \Rightarrow q = \begin{bmatrix}
x/(z/d) \\
y/(z/d) \\
d \\
1
\end{bmatrix}
\]

Perspective Division

- However \(w \neq 1 \), so we must divide by \(w \) to return from homogeneous coordinates
- This perspective division yields

\[
\begin{align*}
x_p &= \frac{x}{z/d} \\
y_p &= \frac{y}{z/d} \\
z_p &= d
\end{align*}
\]

the desired perspective equations

- We will consider the corresponding clipping volume with MV.js functions that are equivalent to deprecated OpenGL functions

View Volumes

Are attached to the cameras!

WebGL Orthogonal Viewing

\[
\text{ortho(left,right,bottom,top,near,far)}
\]

near and far measured from camera
View volume specified in camera coordinates
WebGL Perspective

```javascript
frustum(left, right, bottom, top, near, far)
```

Specified in camera coordinates

Using Field of View

• With `frustum` it is often difficult to get the desired view
 • `perspective(fovy, aspect, near, far)` often provides a better interface

Computing Matrices

• Compute in JS file, send to vertex shader with `gl.uniformMatrix4fv`
 • Dynamic: update in `render()` or shader

```javascript
var render = function() {
    gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
    eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
               radius*Math.sin(theta)*Math.sin(phi),
               radius*Math.cos(theta));
    modelViewMatrix = lookAt(eye, at, up);
    projectionMatrix = perspective(fovy, aspect, near, far);
    gl.uniformMatrix4fv( modelViewMatrixLoc, false,
                         flatten(modelViewMatrix) );
    gl.uniformMatrix4fv( projectionMatrixLoc, false,
                         flatten(projectionMatrix) );
    gl.drawArrays( gl.TRIANGLES, 0, NumVertices );
    requestAnimFrame(render);
};
```

vertex shader

```javascript
in vec4 aPosition;
in vec4 aColor;
out vec4 vColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
    gl_Position = projectionMatrix*modelViewMatrix*aPosition;
    vColor = aColor;
}
```

Orthogonal Projection Matrices
Objectives

- Derive the projection matrices used for standard orthogonal projections
- Introduce oblique projections
- Introduce projection normalization

Normalization

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Pipeline View

Notes

- We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)
- Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible

Orthographic Normalization

Ortho(left,right,bottom,top,near, far)

normalization ⇒ find transformation to convert specified clipping volume to default

P = ST

Orthographic Matrix

- Two steps
 - Move center to origin
 \[T((left-right)/2, -(bottom+top)/2, (near+far)/2) \]
 - Scale to have sides of length 2
 \[S(2/(left-right), 2/(top-bottom), 2/(near-far)) \]

\[
P = \begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & -\frac{right + left}{2} \\
0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{2} \\
0 & 0 & \frac{2}{near - far} & -\frac{near + far}{2} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Final Projection

- Set $z = 0$
- Equivalent to the homogeneous coordinate transformation

$$M_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Hence, general orthographic projection in 4D is

$$P = M_{\text{orth}} \text{ST}$$

Oblique Projections

- The OpenGL projection functions cannot produce general parallel projections such as

- However if we look at the example of the cube it appears that the cube has been sheared

- Oblique Projection = Shear + Orthographic Projection

General Shear

Shear Matrix

- xy shear (z values unchanged)

$$H(\theta, \phi) = \begin{bmatrix} 1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Projection matrix

$$P = M_{\text{orth}} H(\theta, \phi)$$

- General case: $P = M_{\text{orth}} \text{STH}(\theta, \phi)$

Equivalency

Effect on Clipping

- The projection matrix $P = \text{STH}$ transforms the original clipping volume to the default clipping volume

- Top view

$$z = 1$$

- Far plane

$$x = -1$$

- Near plane

$$z = -1$$

- Distorted object (projects correctly)
Perspective Projection Matrices

Objectives

- Derive the perspective projection matrices used for standard WebGL projections

Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at \(z = -1 \), and a 90 degree field of view determined by the planes \(x = \pm z \), \(y = \pm z \).

Perspective Matrices

Simple projection matrix in homogeneous coordinates

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

\[
\begin{align*}
\frac{x'}{w'} &= \frac{x}{z} \\
\frac{y'}{w'} &= \frac{y}{z} \\
\frac{z'}{w'} &= \frac{z}{1 + a + \frac{b}{z}}
\end{align*}
\]

Note that this matrix is independent of the far clipping plane.

Generalization

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

after perspective division, the point \((x, y, z, 1)\) goes to

\[
\begin{align*}
x' &= \frac{x}{z} \\
y' &= \frac{y}{z} \\
z' &= \frac{z}{1 + a + \frac{b}{z}}
\end{align*}
\]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\).

Defining \(\alpha\) and \(\beta\)

If we define

\[
\begin{align*}
\frac{z'}{w'} &= -\frac{a + \beta}{z} \\
\alpha &= \frac{\text{near+far}}{\text{near} - \text{far}} \\
\beta &= \frac{2 \times \text{near} \times \text{far}}{\text{near} - \text{far}}
\end{align*}
\]

the near plane is mapped to \(z = -1 \)
the far plane is mapped to \(z = 1 \)
and the sides are mapped to \(x = \pm 1, y = \pm 1 \)
Hence the new clipping volume is the default clipping volume.
Normalization and Hidden-Surface Removal

Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if \(z_1 > z_2 \) in the original clipping volume then the for the transformed points \(z_1' > z_2' \).

Thus hidden surface removal works if we first apply the normalization transformation.

However, the formula \(z' = -(\alpha + \beta z) \) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small.

WebGL Perspective

• `frustum` allows for an asymmetric viewing frustum (although `perspective` does not)

```
frustum(left,right,bottom,top,near,far)
```

WebGL Perspective

• `perspective` provides less flexible, but more intuitive perspective viewing

```
perspective(fov, aspect, near, far);
```

• Field of view in angles
• aspect: \(w/h \)
• near < far, both positive

OpenGL Perspective Matrix

• The normalization in `frustum` requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation.

\[
P = \text{NSH}
\]

Why do we do it this way?

• Normalization allows for a single pipeline for both perspective and orthogonal viewing
• We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
• Simplifies clipping
Perspective Matrices

\[
P = \begin{bmatrix}
 \frac{2 \times \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} - \text{left}}{\text{right} - \text{left}} & 0 \\
 \frac{2 \times \text{near}}{\text{top} - \text{bottom}} & 0 & \frac{\text{top} - \text{bottom}}{\text{top} - \text{bottom}} & 0 \\
 0 & 0 & \frac{\text{far} + \text{near}}{\text{far} - \text{near}} & 0 \\
 0 & 0 & \frac{\text{far} + \text{near}}{\text{far} - \text{near}} & 1
\end{bmatrix}
\]

Go to Assignment 5

Simple Mesh Format (SMF)

```plaintext
#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 2 5 1
f 1 5 4
f 4 5 3
```

Normal for Triangle

Given a triangle with vertices \(p_1, p_2, p_3 \), the normal \(n \) is calculated as:

\[
0 = \mathbf{n} \cdot (p - p_0)
\]

\[
\mathbf{n} = \frac{(p_2 - p_0) \times (p_3 - p_0)}{|p_2 - p_0|}
\]

Note that the right-hand rule determines the outward face.
Flat Shading

- Define objects with TRIANGLES
- Vertices and colors are duplicated in buffers
- The three vertices of each triangle are assigned the same color

GLSL 3.0 supports a “flat” qualifier
- Each vertex has a unique color
- Triangle’s color is set to the last vertex’s color
- In vertex shader
 flat out vcolor;
- In fragment shader
 flat in vcolor;

Mesh Shading

- The previous example is not general because we knew the normal at each vertex analytically
- For polygonal models, Gouraud proposed we use the average of the normals around a mesh vertex

\[\mathbf{n} = \frac{(\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4)}{|\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|} \]

Calculating Normals

- Create vector structure (for normals) same size as vertex structure
- For each face
 - Calculate unit normal
 - Add to normals structure using vertex indices
- Normalize all the normal vectors

Suggestions for HW5

- Read in smf files & test with HW4
- Transform centroid of bounding box to origin
- Calculate normal for each triangle
- Use normalized normal as color for triangle
 - Be sure to take absolute value
- Each duplicated triangle vertex has its own color
 - This color is passed to the fragment shader
- Next implement LookAt feature
- Test with fixed eye point and orthographic projection

Suggestions for HW5

- Make sure that your model is in the view volume defined by your ortho() function
- Recall that your view volume is defined in camera coordinates
- Send model-view and projection matrix to the vertex shader via uniform variable
- Render with gl.TRIANGLES
- You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use
• Define menu that allows user to pick projection type
• Make camera move with a keyboard function
• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)