Objectives

- Introduce the mathematics of projection
- Describe WebGL projection functions in MV.js
- Look at alternate viewing APIs

From the Beginning

- In the beginning:
 - fixed function pipeline
 - Model-View and Projection Transformation
 - Predefined frames: model, object, camera, clip, ndc, window
- After deprecation
 - pipeline with programmable shaders
 - no transformations
 - clip, ndc window frames
- MV.js reintroduces original capabilities

The WebGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity (almost)
Hard-wired Projection

Hard-wired (default) projection is orthographic

Moving the Camera Frame

- If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame
 - Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation \((\text{translate}(0.0, 0.0, -d))\)
 - \(-d > 0\)

Moving Camera back from Origin

Frames after translation by \(-d\)

World is actually being moved relative to camera frame.

Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view
 - Move camera away from origin
 - Rotate it 90 degrees

WebGL code

\[
\text{// Using MV.js}
\]
\[
\text{var t = translate}(0.0, 0.0, -d);
\]
\[
\text{var ry = rotateY(-90.0)};
\]
\[
\text{var m = mult(t, ry)};
\]
\[
\text{// or}
\]
\[
\text{var m = mult(translate(0.0, 0.0, -d),}
\]
\[
\text{rotateY(-90.0))};
\]

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.
LookAt Function

\[
\text{LookAt}(\text{eye}, \text{at}, \text{up})
\]

- \text{eye} – location of camera
- \text{at} – look-at point
- \text{up} – up vector

The LookAt Function

- The GLU library contained the function \text{gluLookAt} to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
 - Should not be parallel to look-at direction
- Replaced by \text{lookAt()} in MV.js
 - Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

\[
\begin{align*}
\text{var } \text{eye} &= \text{vec3}(1.0, 1.0, 1.0); \\
\text{var } \text{at} &= \text{vec3}(0.0, 0.0, 0.0); \\
\text{var } \text{up} &= \text{vec3}(0.0, 1.0, 0.0); \\
\text{var } \text{mv} &= \text{lookAt}(\text{eye}, \text{at}, \text{up});
\end{align*}
\]

Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles

Projections and Normalization

- The default projection in the eye (camera) frame is orthographic
- For points within the default view volume
 \[
 \begin{align*}
 x_p &= x \\
 y_p &= y \\
 z_p &= 0
 \end{align*}
 \]
- Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

- The default orthographic projection
 \[
 \begin{pmatrix}
 x_p \\
 y_p \\
 z_p \\
 w_p
 \end{pmatrix} = M
 \begin{pmatrix}
 x \\
 y \\
 z \\
 1
 \end{pmatrix}
 \]
- In practice, we can let \(M = I \) and set the \(z \) term to zero later
Simple Perspective

- Center of projection at the origin
- Projection plane $z = d$, $d < 0$

Perspective Equations

Consider top and side views

$$
\begin{align*}
 x_p &= \frac{x}{z/d} \\
 y_p &= \frac{y}{z/d} \\
 z_p &= d
\end{align*}
$$

Homogeneous Coordinate Form

Consider $q =Mp$ where $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$
\begin{align*}
 p &= \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \\
 q &= \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \\
 x/(z/d) \\ y/(z/d) \\ d \\ 1
\end{align*}
$$

Perspective Division

- However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
- This perspective division yields

$$
\begin{align*}
 x_p &= \frac{x}{z/d} \\
 y_p &= \frac{y}{z/d} \\
 z_p &= d
\end{align*}
$$

the desired perspective equations

- We will consider the corresponding clipping volume with MV.js functions that are equivalent to deprecated OpenGL functions

View Volumes

- Are attached to the cameras!
- I.e., view volume parameters are in camera coordinates

WebGL Orthogonal Viewing

- `ortho(left, right, bottom, top, near, far)`
- `left, right, bottom, top, near, far` measured from camera
- View volume specified in camera coordinates
WebGL Perspective

$$\text{frustum}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far})$$

Specified in camera coordinates

Using Field of View

- With frustum it is often difficult to get the desired view
- $$\text{perspective}(\text{fovy}, \text{aspect}, \text{near}, \text{far})$$ often provides a better interface

Computing Matrices

- Compute in JS file, send to vertex shader with gl.uniformMatrix4fv
- Dynamic: update in render() or shader

vertex shader

```glsl
in vec4 aPosition;
in vec4 aColor;
out vec4 vColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
    gl_Position = projectionMatrix * modelViewMatrix * aPosition;
vColor = aColor;
}
```

viewing.js

```javascript
var render = function() {
gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));
modelViewMatrix = lookAt(eeye, at , up);
projectionMatrix = perspective(fovy, aspect, near, far);
gl.uniformMatrix4fv(modelViewMatrixLoc, false, flatten(modelViewMatrix));
gl.uniformMatrix4fv(projectionMatrixLoc, false, flatten(projectionMatrix));
gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
}
```

Orthogonal Projection Matrices
Objectives

• Derive the projection matrices used for standard orthogonal projections
• Introduce oblique projections
• Introduce projection normalization

Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Pipeline View

modelview transformation → projection transformation → perspective division
nonsingular
vertex shader output
clipping → projection
3D → 2D
against default cube

Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)
• Normalization lets us clip against simple cube regardless of type of projection
• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible

Orthographic Normalization

\[\text{Ortho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]

normalization ⇒ find transformation to convert specified clipping volume to default

\[\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

Orthographic Matrix

• Two steps
 - Move center to origin
 \[T((-\text{left}+\text{right})/2, -(\text{bottom}+\text{top})/2, (\text{near}+\text{far})/2) \]
 - Scale to have sides of length 2
 \[S(2/((\text{left}-\text{right})/2), 2/((\text{top}-\text{bottom})/2), 2/((\text{near}-\text{far})/2)) \]
Final Projection

• Set \(z = 0 \)
• Equivalent to the homogeneous coordinate transformation
 \[
 M_{\text{orth}} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]
• Hence, general orthographic projection in 4D is
 \[P = M_{\text{orth}} \mathbf{ST} \]

Oblique Projections

• The OpenGL projection functions cannot produce general parallel projections such as
• However if we look at the example of the cube it appears that the cube has been sheared
• Oblique Projection = Shear + Orthographic Projection

General Shear

Shear Matrix

\(xyz \) shear (z values unchanged)
\[
H(\theta, \phi) = \begin{bmatrix}
1 & 0 & -\cot \theta & 0 \\
0 & 1 & -\cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Projection matrix
\[P = M_{\text{orth}} H(\theta, \phi) \]
General case:
\[P = M_{\text{orth}} STH(\theta, \phi) \]

Equivalency

Effect on Clipping

• The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume
• The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume
• The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume
• The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume
• The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume
• The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume
Perspective Projection Matrices

Objectives

- Derive the perspective projection matrices used for standard WebGL projections

Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at \(z = -1 \), and a 90 degree field of view determined by the planes \(x = \pm z \), \(y = \pm z \).

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

Perspective Matrices

Simple projection matrix in homogeneous coordinates

Note that this matrix is independent of the far clipping plane.

Generalization

if we define

\[
\alpha = \frac{\text{near + far}}{\text{near} - \text{far}}
\]

\[
\beta = 2 \times \text{near} \times \frac{\text{far}}{\text{near} - \text{far}}
\]

Defining \(\alpha \) and \(\beta \)

After perspective division, the point \((x, y, z, 1)\) goes to

\[
\begin{align*}
\frac{x'}{z'} &= \frac{x}{z} \\
\frac{y'}{z'} &= \frac{y}{z} \\
\frac{z'}{z'} &= \frac{az + \beta}{z}
\end{align*}
\]

which projects orthogonally to the desired point regardless of \(\alpha \) and \(\beta \).

If we define

\[
\frac{z'}{z'} = -(\alpha + \beta z)
\]

the near plane is mapped to \(z = -1 \)

the far plane is mapped to \(z = 1 \)

and the sides are mapped to \(x = \pm 1, y = \pm 1 \)

Hence the new clipping volume is the default clipping volume.
Normalization and Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' > z_2'$.
- Thus hidden surface removal works if we first apply the normalization transformation.
- However, the formula $z' = -(a + \beta z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small.

WebGL Perspective

- **frustum** allows for an asymmetric viewing frustum (although perspective does not).

$$ Z = Z_{\text{min}} $$

$$ (x_{\text{min}}, y_{\text{min}}, z_{\text{max}}) $$

- left < right
- bottom < top
- near < far
- near & far positive

WebGL Perspective

- **perspective** provides less flexible, but more intuitive perspective viewing.

$$ \text{perspective}(\text{fov}, \text{aspect}, \text{near}, \text{far}); $$

- Field of view in degrees
- aspect: w/h
- near < far, both positive

OpenGL Perspective Matrix

- The normalization in **frustum** requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation.

$$ P = NSH $$

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing.
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading.
- Simplifies clipping.
Perspective Matrices

\[
\mathbf{P} = \begin{bmatrix}
2 \times \text{near} & 0 & 0 & 0 \\
0 & 2 \times \text{near} & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{right} - \text{left} & 0 & 0 & 0 \\
0 & \text{right} - \text{left} & 0 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- **Frustum**
- **Perspective**

Viewing WebGL Code

- It’s not too bad, thanks to Ed Angel
- In application
  ```javascript
  model_view = lookAt(eye, at, up);
  projection = ortho(left, right, bottom, top, near, far);
  or
  projection = perspective(fov, aspect, near, far);
  ```
  ```javascript
  gl_Position = projection*model_view*vPosition;
  ```

Simple Mesh Format (SMF)

- Defined by Michael Garland
  ```text
  $\#SMF 1.0$
  $\#v$vertices 5
  $\#f$aces 6
  ```
  ```text
  v 2.0 0.0 2.0
  v 2.0 0.0 -2.0
  v -2.0 0.0 2.0
  v 2.0 0.0 0.0
  ```
  ```text
  f 1 3 2
  f 1 4 3
  ```
  ```text
  f 3 5 2
  f 2 5 1
  ```
  ```text
  f 1 5 4
  f 4 5 3
  ```

Reading an SMF File

```javascript
var smf_file = loadFileAJAX(fname); # in initShaders2.js
var lines = smf_file.split("\n");
for(var line = 0; line < lines.length; line++){
  var strings = lines[line].trimRight().split(' ');
  switch(strings[0]){
    case('v'):
      # Process vertices
      break;
    case('f'):
      # Process faces
      break;
  }
}
```

Normal for Triangle

\[
\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)
\]

Note that right-hand rule determines outward face.
Flat Shading

• Define objects with TRIANGLES
 • Vertices and colors are duplicated in buffers
 • The three vertices of each triangle are assigned the same color

GLSL 3.0 supports a “flat” qualifier

• Each vertex has a unique color
 • Triangle’s color is set to the last vertex’s color
 • In vertex shader
 flat out vcolor;
 • In fragment shader
 flat in vcolor;

Mesh Shading

• The previous example is not general because we knew the normal at each vertex analytically
 • For polygonal models, Gouraud proposed we use the average of the normals around a mesh vertex

\[
\mathbf{n} = \frac{\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4}{|\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|}
\]

Calculating Normals

• Create vector structure (for normals) same size as vertex structure
 • Initialize with [0,0,0]
 • For each face
 - Calculate unit normal
 - Add to normals structure using vertex indices
 • Normalize all the normal vectors

Suggestions for HW5

• Read in smf files & test with HW4
• Transform centroid of bounding box to origin
• Calculate normal for each triangle
• Use normalized normal as color for triangle
 - Be sure to take absolute value
• Each duplicated triangle vertex has its own color
 - This color is passed to the fragment shader
• Next implement LookAt feature
• Test with fixed eye point and orthographic projection

• Make sure that your model is in the view volume defined by your ortho() function
• Recall that your view volume is defined in camera coordinates
• Send model-view and projection matrix to the vertex shader via uniform variable
• Render with gl.TRIANGLES
• You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use
• Define menu that allows user to pick projection type
• Make camera move with a keyboard() function
• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)