Computer Viewing

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Positioning the Camera
Objectives

• Introduce the mathematics of projection
• Describe WebGL projection functions in MV.js
• Look at alternate viewing APIs
From the Beginning

• In the beginning:
 - fixed function pipeline
 - Model-View and Projection Transformation
 - Predefined frames: model, object, camera, clip, ndc, window

• After deprecation
 - pipeline with programmable shaders
 - no transformations
 - clip, ndc window frames

• MV.js reintroduces original capabilities
Computer Viewing

• There are three aspects of the viewing process, all of which should be / are implemented in the pipeline,
 - Positioning the camera
 • Setting the model-view matrix
 - Selecting a lens
 • Setting the projection matrix
 - Clipping
 • Setting the view volume
The WebGL Camera

• In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
• The camera is located at origin and points in the negative z direction
• OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity (almost)
Hard-wired (default) projection is orthographic
Moving the Camera Frame

• If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 • Translate the camera frame
 - Move the objects in the negative z direction
 • Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation \(\text{Translate}(0.0, 0.0, -d); \)
 \(-d > 0\)
Moving Camera back from Origin

frames after translation by $-d$

$d > 0$

default frames

(a)
(b)
Moving Camera back from Origin

frames after translation by $-d$

$d > 0$

default frames

World is actually being moved relative to camera frame.
Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations.
- Example: side view
 - Rotate the scene
 - Move it away from origin
 - Model-view matrix \(C = TR \)
- Remember that last transformation specified is first to be applied

```javascript
// Using MV.js
var t = translate(0.0, 0.0, -d);
var ry = rotateY(-90.0);
var m = mult(t, ry);
// or
var m = mult(translate(0.0, 0.0, -d),
             rotateY(-90.0));
```

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.
LookAt Function

LookAt(eye, at, up)

- eye - location of camera
- at - look-at point
- up - up vector

\[(up_x, up_y, up_z)\]

\[(at_x, at_y, at_z)\]
The GLU library contained the function `gluLookAt` to form the required modelview matrix through a simple interface.

- Note the need for setting an up direction
 - Should not be parallel to look-at direction

- Replaced by `lookAt()` in MV.js
 - Can concatenate with modeling transformations

- Example: isometric view of cube aligned with axes

```javascript
var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);
var mv = lookAt(eye, at, up);
```
Other Viewing APIs

• The LookAt function is only one possible API for positioning the camera

• Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Projection
Projections and Normalization

• The default projection in the eye (camera) frame is orthographic

• For points within the default view volume

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]

• Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
Homogeneous Coordinate Representation

default orthographic projection

\[\begin{align*}
 x_p &= x \\
 y_p &= y \\
 z_p &= 0 \\
 w_p &= 1
\end{align*} \]

\[p_p = M p \]

\[M = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \]

In practice, we can let \(M = I \) and set the \(z \) term to zero later.
Simple Perspective

- Center of projection at the origin
- Projection plane $z = d$, $d < 0$
Perspective Equations

Consider top and side views

\[x_p = \frac{x}{z/d} \]

\[y_p = \frac{y}{z/d} \]

\[z_p = d \]
Homogeneous Coordinate Form

consider \(\mathbf{q} = \mathbf{M} \mathbf{p} \) where \(\mathbf{M} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0 \\
\end{bmatrix} \)

\[
\begin{align*}
\mathbf{q} &= \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \\
\Rightarrow \quad \mathbf{p} &= \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} x / (z / d) \\ y / (z / d) \\ d \\ 1 \end{bmatrix}
\end{align*}
\]
Perspective Division

• However $w \neq 1$, so we must divide by w to return from homogeneous coordinates

• This *perspective division* yields

$$
\begin{align*}
 x_p &= \frac{x}{z/d} \\
 y_p &= \frac{y}{z/d} \\
 z_p &= d
\end{align*}
$$

the desired perspective equations

• We will consider the corresponding clipping volume with MV.js functions that are equivalent to deprecated OpenGL functions
WebGL Orthogonal Viewing

\[\text{ortho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]

\[\text{near} \text{ and } \text{far} \text{ measured from camera} \]

View volume specified in camera coordinates
WebGL Perspective

`frustum(left, right, bottom, top, near, far)`

Specified in camera coordinates
Using Field of View

• With frustum it is often difficult to get the desired view

• perspective(fovy, aspect, near, far) often provides a better interface

\[
\begin{align*}
\text{aspect} &= \frac{w}{h} \\
\text{frustum} &\quad \text{front plane}
\end{align*}
\]
Computing Matrices

• Compute in JS file, send to vertex shader with `gl.uniformMatrix4fv`

• Dynamic: update in `render()` or shader
var render = function(){
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
 eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
 radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));
 modelViewMatrix = lookAt(eye, at , up);
 projectionMatrix = perspective(fovy, aspect, near, far);
 gl.uniformMatrix4fv(modelViewMatrixLoc, false,
 flatten(modelViewMatrix));
 gl.uniformMatrix4fv(projectionMatrixLoc, false,
 flatten(projectionMatrix));
 gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
 requestAnimFrame(render);
}
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
 gl_Position = projectionMatrix * modelViewMatrix * vPosition;
 fColor = vColor;
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015
Orthogonal Projection Matrices
Objectives

• Derive the projection matrices used for standard orthogonal projections
• Introduce oblique projections
• Introduce projection normalization
Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.
• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.
Pipeline View

- **modelview transformation**
- **projection transformation**
- **perspective division**
- **clipping**
- **projection**

Against default cube

4D → 3D

Vertex shader output

3D → 2D

Nonsingular
Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)

• Normalization lets us clip against simple cube regardless of type of projection

• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
Orthographic Normalization

Ortho(left, right, bottom, top, near, far)

Normalization \Rightarrow find transformation to convert specified clipping volume to default

left < right bottom < top near < far
Orthographic Matrix

- Two steps
 - Move center to origin
 \[T\left(\frac{-(left+right)}{2}, \frac{-(bottom+top)}{2}, \frac{(near+far)}{2}\right) \]
 - Scale to have sides of length 2
 \[S\left(\frac{2}{(left-right)}, \frac{2}{(top-bottom)}, \frac{2}{(near-far)}\right) \]

\[
P = ST = \begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\
0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\
0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Final Projection

- Set $z = 0$
- Equivalent to the homogeneous coordinate transformation

$$M_{\text{orth}} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

- Hence, general orthographic projection in 4D is

$$P = M_{\text{orth}}ST$$
Oblique Projections

• The OpenGL projection functions cannot produce general parallel projections such as

• However if we look at the example of the cube it appears that the cube has been sheared

• Oblique Projection = Shear + Orthographic Projection
General Shear

Back clipping plane
Front clipping plane
Projection plane
DOP

Object

\{(x, z)\}
\{(x', 0)\}

\theta

\{(z, y)\}
\{(0, y_p)\}

\phi

top view
side view
Shear Matrix

xy shear (z values unchanged)

\[
H(\theta,\phi) = \begin{bmatrix}
1 & 0 & \cot \theta & 0 \\
0 & 1 & \cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Projection matrix

\[
P = M_{\text{orth}} H(\theta,\phi)
\]

General case: \[
P = M_{\text{orth}} STH(\theta,\phi)
\]
Equivalency
Effect on Clipping

- The projection matrix \(P = STH \) transforms the original clipping volume to the default clipping volume.

![Diagram showing the effect of projection matrix on clipping volume]

- The clipping volume is transformed by the projection matrix, resulting in a distorted object (projects correctly).
Perspective Projection Matrices
Objectives

• Derive the perspective projection matrices used for standard WebGL projections
Consider a simple perspective with the COP at the origin, the near clipping plane at $z = -1$, and a 90 degree field of view determined by the planes $x = \pm z, y = \pm z$.
Simple projection matrix in homogeneous coordinates

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
x' = x \quad x' = -x/z \\
y' = y \quad y' = -y/z \\
z' = z \quad z' = -1 \\
w' = -z
\]

Note that this matrix is independent of the far clipping plane
Generalization

\[
N = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
x' = x \\
y' = y \\
z' = \alpha z + \beta \\
w' = -z
\]

after perspective division, the point \((x, y, z, 1)\) goes to

\[
x'' = -x/z \\
y'' = -y/z \\
z'' = -(\alpha + \beta/z)
\]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\)
Defining \(\alpha \) and \(\beta \)

If we define

\[
\alpha = \frac{\text{near}+\text{far}}{\text{near}-\text{far}}
\]

\[
\beta = \frac{2 \times \text{near} \times \text{far}}{\text{near} - \text{far}}
\]

the near plane is mapped to \(z = -1 \)
the far plane is mapped to \(z = 1 \)
and the sides are mapped to \(x = \pm 1, y = \pm 1 \)

Hence the new clipping volume is the default clipping volume

\[
z'' = -(\alpha + \beta/z)
\]
Normalization Transformation

original clipping volume

original object

COP

new clipping volume

distorted object projects correctly

z = -x

z = x

z = -far

z = -near

x = -1

x = 1

z = 1

z = -1
Normalization and Hidden-Surface Removal

• Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if \(z_1 > z_2 \) in the original clipping volume then the for the transformed points \(z_1' > z_2' \)

• Thus hidden surface removal works if we first apply the normalization transformation

• However, the formula \(z'' = -(\alpha + \beta/z) \) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small
WebGL Perspective

- frustum allows for an unsymmetric viewing frustum (although perspective does not)

frustum(left, right, bottom, top, near, far)

\[z = z_{\text{min}} \]

(left < right, bottom < top, near < far, near & far positive)
• perspective provides less flexible, but more intuitive perspective viewing
 perspective(fov, aspect, near, far);

• Field of view in angles
• aspect: w/h
• near < far, both positive
OpenGL Perspective Matrix

- The normalization in frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation.

\[P = NSH \]

- our previously defined perspective matrix
- shear and scale
Why do we do it this way?

• Normalization allows for a single pipeline for both perspective and orthogonal viewing
• We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
• Simplifies clipping
Perspective Matrices

\[P = \begin{bmatrix}
\frac{2 \times \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} - \text{left}}{\text{right} - \text{left}} & 0 \\
0 & \frac{2 \times \text{near}}{\text{top} - \text{bottom}} & \frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} & 0 \\
0 & 0 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{2 \times \text{far} \times \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix} \]

\[P = \begin{bmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{2 \times \text{far} \times \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix} \]
Viewing WebGL Code

• It’s not too bad, thanks to Ed Angel

• In application

```
model_view = lookAt(eye, at, up);
projection = ortho(left, right, bottom, top, near, far);
```

or

```
projection = perspective(fov, aspect, near, far);
```

• In vertex shader

```
gl_Position = projection*model_view*vPosition;
```
Simple Mesh Format (SMF)

• Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

• Triangle data
• List of 3D vertices
• List of references to vertex array
define faces (triangles)

• Vertex indices begin at 1

#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
Normal for Triangle

\[\text{plane } \mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0 \]

\[\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0) \]

normalise \(\mathbf{n} \leftarrow \frac{\mathbf{n}}{|\mathbf{n}|} \)

Note that right-hand rule determines outward face
Suggestions for HW5

• Read in smf files & test with HW4
• Transform centroid of bounding box to origin
• Calculate normal for each triangle
• Use normalized normal as color for triangle
 - Be sure to take absolute value
• Each duplicated triangle vertex has its own color
 - This color is passed to the fragment shader
• Next implement LookAt feature
• Test with fixed eye point and orthographic projection
Suggestions for HW5

- Make sure that your model is in the view volume defined by your `ortho()` function
- Recall that your view volume is defined in camera coordinates
- Send model-view and projection matrix to the vertex shader via uniform variable
- Render with `gl.TRIANGLES`
- You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use

• Define menu that allows user to pick projection type

• Make camera move with a keyboard() function

• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)