Computer Viewing

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Positioning the Camera
Objectives

• Introduce the mathematics of projection
• Describe WebGL projection functions in MV.js
• Look at alternate viewing APIs
From the Beginning

• In the beginning:
 - fixed function pipeline
 - Model-View and Projection Transformation
 - Predefined frames: model, object, camera, clip, ndc, window

• After deprecation
 - pipeline with programmable shaders
 - no transformations
 - clip, ndc window frames

• MV.js reintroduces original capabilities
Computer Viewing

• There are three aspects of the viewing process, all of which should be / are implemented in the pipeline,
 - Positioning the camera
 • Setting the model-view matrix
 - Selecting a lens
 • Setting the projection matrix
 - Clipping
 • Setting the view volume
The WebGL Camera

• In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
• The camera is located at origin and points in the negative z direction
• OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity (almost)
Hard-wired Projection

Hard-wired (default) projection is orthographic
Moving the Camera Frame

If we want to visualize objects with both positive and negative z values we can either

- Move the camera in the positive z direction
 - Translate the camera frame

- Move the objects in the negative z direction
 - Translate the world frame

Both of these views are equivalent and are determined by the model-view matrix

Want a translation ($\text{Translate}(0.0,0.0,-d);$)

$d > 0$
Moving Camera back from Origin

frames after translation by \(-d\)

\(d > 0\)

default frames

(a) frames after translation by \(-d\)

(b)
Moving Camera back from Origin

frames after translation by $-d$

$d > 0$

default frames

World is actually being moved relative to camera frame.
Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view
 - Rotate the scene
 - Move it away from origin
 - Model-view matrix \(C = TR \)
• Remember that last transformation specified is first to be applied

```javascript
// Using MV.js
var t = translate(0.0, 0.0, -d);
var ry = rotateY(-90.0);
var m = mult(t, ry);
// or
var m = mult(translate (0.0, 0.0, -d),
             rotateY(-90.0));
```

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.
LookAt Function

LookAt(eye, at, up)
 eye – location of camera
 at – look-at point
 up – up vector
The LookAt Function

• The GLU library contained the function `gluLookAt` to form the required modelview matrix through a simple interface

• Note the need for setting an up direction
 - Should not be parallel to look-at direction

• Replaced by `lookAt()` in MV.js
 - Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes

```javascript
var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);
var mv = lookAt(eye, at, up);
```
Other Viewing APIs

• The LookAt function is only one possible API for positioning the camera

• Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Projection
Projections and Normalization

• The default projection in the eye (camera) frame is orthographic

• For points within the default view volume

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]

• Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
Homogeneous Coordinate Representation

default orthographic projection

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]
\[w_p = 1 \]

\[\mathbf{M} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} \]

In practice, we can let \(\mathbf{M} = \mathbf{I} \) and set the \(z \) term to zero later.
Simple Perspective

- Center of projection at the origin
- Projection plane $z = d$, $d < 0$
Perspective Equations

Consider top and side views

\[x_p = \frac{x}{z/d} \quad y_p = \frac{y}{z/d} \quad z_p = d \]
Homogeneous Coordinate Form

consider \(\mathbf{q} = \mathbf{Mp} \) where \(\mathbf{M} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0 \\
\end{bmatrix} \)

\[
\mathbf{p} = \begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix} \quad \Rightarrow \quad \mathbf{q} = \begin{bmatrix}
x/(z/d) \\
y/(z/d) \\
z/d \\
d \\
1 \\
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix}
\]
Perspective Division

• However \(w \neq 1 \), so we must divide by \(w \) to return from homogeneous coordinates

• This \textit{perspective division} yields

\[
\begin{align*}
x_p &= \frac{x}{z/d} \\
y_p &= \frac{y}{z/d} \\
z_p &= d
\end{align*}
\]

the desired perspective equations

• We will consider the corresponding clipping volume with MV.js functions that are equivalent to deprecated OpenGL functions
WebGL Orthogonal Viewing

\text{ortho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far})

near and far measured \textit{from} camera

View volume specified in \textit{camera coordinates}
WebGL Perspective

\[\text{frustum}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]

Specified in \textit{camera coordinates}
Using Field of View

- With frustum it is often difficult to get the desired view
- perspective (fovy, aspect, near, far) often provides a better interface

\[\text{aspect} = \frac{w}{h} \]

(front plane \(z = -\text{near}\))
Computing Matrices

- Compute in JS file, send to vertex shader with `gl.uniformMatrix4fv`
- Dynamic: update in `render()` or shader

- **Controls:**
 - `zNear` 0.01
 - `zFar` 3
 - `radius` 0.05
 - `theta` -90
 - `phi` -90
 - `fov` 10
 - `aspect` 0.5
var render = function(){
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
 eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
 radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));
 modelViewMatrix = lookAt(eye, at, up);
 projectionMatrix = perspective(fovy, aspect, near, far);
 gl.uniformMatrix4fv(modelViewMatrixLoc, false,
 flatten(modelViewMatrix));
 gl.uniformMatrix4fv(projectionMatrixLoc, false,
 flatten(projectionMatrix));
 gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
 requestAnimFrame(render);
};
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
 gl_Position = projectionMatrix * modelViewMatrix * vPosition;
 fColor = vColor;
}

Orthogonal Projection Matrices
Objectives

- Derive the projection matrices used for standard orthogonal projections
- Introduce oblique projections
- Introduce projection normalization
Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.

• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.
Pipeline View

modelview transformation → projection transformation → perspective division

4D → 3D

nonsingular

vertex shader output

clipping → projection

3D → 2D

against default cube
Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)

• Normalization lets us clip against simple cube regardless of type of projection

• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
Orthographic Normalization

```latex
Ortho(left, right, bottom, top, near, far)
```

normalization \Rightarrow find transformation to convert specified clipping volume to default

```
(left, bottom, -near) \rightarrow (right, top, -far)
```

$\text{left} < \text{right} \quad \text{bottom} < \text{top} \quad \text{near} < \text{far}$
Orthographic Matrix

- Two steps
 - Move center to origin
 \[T(-\frac{\text{left}+\text{right}}{2}, -\frac{\text{bottom}+\text{top}}{2}, \frac{\text{near}+\text{far}}{2}) \]
 - Scale to have sides of length 2
 \[S(\frac{2}{\text{right}-\text{left}}, \frac{2}{\text{top}-\text{bottom}}, \frac{2}{\text{near}-\text{far}}) \]

\[P = ST = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{2} \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & -\frac{\text{top} + \text{bottom}}{2} \\
0 & 0 & \frac{2}{\text{near} - \text{far}} & -\frac{\text{near} + \text{far}}{2} \\
0 & 0 & 0 & 1
\end{bmatrix} \]
Final Projection

• Set $z = 0$

• Equivalent to the homogeneous coordinate transformation

$$M_{orth} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

• Hence, general orthographic projection in 4D is

$$P = M_{orth}ST$$
Oblique Projections

• The OpenGL projection functions cannot produce general parallel projections such as

• However if we look at the example of the cube it appears that the cube has been sheared

• Oblique Projection = Shear + Orthographic Projection
General Shear

- Back clipping plane
- Front clipping plane
- Projection plane
- DOP

Top view: Point $P(x, z)$ is transformed to $P'(x', 0)$.

Side view: Point $P(0, y_p)$ is transformed to $P'(z, y)$.

Shear Matrix

xy shear (z values unchanged)

$$H(\theta, \phi) = \begin{bmatrix}
1 & 0 & -\cot \theta & 0 \\
0 & 1 & -\cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Projection matrix

$$P = M_{\text{orth}} H(\theta, \phi)$$

General case: $P = M_{\text{orth}} STH(\theta, \phi)$
Equivalency
Effect on Clipping

• The projection matrix $P = STH$ transforms the original clipping volume to the default clipping volume

![Diagram showing the effect of the projection matrix on the clipping volume.](image)

- Object
- Top view
- $x = -1$
- $z = -1$
- Distorted object (projects correctly)
- Near plane
- Far plane
- Clipping volume
- DOP
Perspective Projection Matrices
Objectives

• Derive the perspective projection matrices used for standard WebGL projections
Consider a simple perspective with the COP at the origin, the near clipping plane at $z = -1$, and a 90 degree field of view determined by the planes $x = \pm z, y = \pm z$.

![Diagram](image-url)
Perspective Matrices

Simple projection matrix in homogeneous coordinates

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
x' = x \\
y' = y \\
z' = z \\
w' = -z
\]

Note that this matrix is independent of the far clipping plane.
Generalization

\[
N = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

\[
x' = x \\
y' = y \\
z' = \alpha z + \beta \\
w' = -z
\]

after perspective division, the point \((x, y, z, 1)\) goes to

\[
x'' = -\frac{x}{z} \\
y'' = -\frac{y}{z} \\
z'' = -(\alpha + \beta/z)
\]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\)
Defining α and β

If we define

$$z'' = -(\alpha + \beta/z)$$

$$\alpha = \frac{near + far}{near - far}$$

$$\beta = \frac{2 \times near \times far}{near - far}$$

the near plane is mapped to $z = -1$
the far plane is mapped to $z = 1$
and the sides are mapped to $x = \pm 1, y = \pm 1$

Hence the new clipping volume is the default clipping volume
Normalization Transformation

original clipping volume

original object

new clipping volume

distorted object projects correctly

$z = -x$

$z = x$

$z = -far$

$z = -near$

$x = -1$

$x = 1$

$z = -1$

$z = 1$
Normalization and Hidden-Surface Removal

• Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if \(z_1 > z_2 \) in the original clipping volume then the for the transformed points \(z_1' > z_2' \)

• Thus hidden surface removal works if we first apply the normalization transformation

• However, the formula \(z'' = -(\alpha + \beta/z) \) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small
WebGL Perspective

- frustum allows for an unsymmetric viewing frustum (although perspective does not)

frustum(left, right, bottom, top, near, far)

\[z = z_{\text{min}} \]

\((x_{\text{min}}, y_{\text{min}}, z_{\text{max}})\) \quad \text{left < right} \quad \text{bottom < top} \quad \text{near < far}

near & far positive
WebGL Perspective

- `perspective` provides less flexible, but more intuitive perspective viewing
  ```javascript
  perspective(fov, aspect, near, far);
  ```
- Field of view in angles
- `aspect`: w/h
- `near < far`, both positive
OpenGL Perspective Matrix

• The normalization in frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation

\[P = \text{NSH} \]

our previously defined perspective matrix shear and scale
Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing.
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading.
- Simplifies clipping.
Perspective Matrices

frustum

\[
P = \begin{bmatrix}
\frac{2 \cdot \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} - \text{left}}{\text{top} + \text{bottom}} & 0 \\
0 & \frac{2 \cdot \text{near}}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & \frac{-\text{far} + \text{near}}{\text{far} - \text{near}} & \frac{-2 \cdot \text{far} \cdot \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

perspective

\[
P = \begin{bmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & -\frac{-\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{-2 \cdot \text{far} \cdot \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Viewing WebGL Code

• It’s not too bad, thanks to Ed Angel

• In application

 model_view = lookAt(eye, at, up);
 projection = ortho(left, right, bottom, top, near, far);

 or

 projection = perspective(fov, aspect, near, far);

• In vertex shader

 gl_Position = projection*model_view*vPosition;
Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

- Triangle data
- List of 3D vertices
- List of references to vertex array
 define faces (triangles)

- Vertex indices begin at 1

```plaintext
#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
```
Normal for Triangle

plane \quad \mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0

\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)

normalize \quad \mathbf{n} \leftarrow \mathbf{n}/ |\mathbf{n}|

Note that right-hand rule determines outward face
Suggestions for HW5

• Read in smf files & test with HW4
• Transform centroid of bounding box to origin
• Calculate normal for each triangle
• Use normalized normal as color for triangle
 - Be sure to take absolute value
• Each duplicated triangle vertex has its own color
 - This color is passed to the fragment shader
• Next implement LookAt feature
• Test with fixed eye point and orthographic projection
Suggestions for HW5

• Make sure that your model is in the view volume defined by your ortho() function
• Recall that your view volume is defined in camera coordinates
• Send model-view and projection matrix to the vertex shader via uniform variable
• Render with gl.TRIANGLES
• You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use
• Define menu that allows user to pick projection type
• Make camera move with a keyboard() function
• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)