Computer Viewing

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Positioning the Camera
Objectives

• Introduce the mathematics of projection
• Describe WebGL projection functions in MV.js
• Look at alternate viewing APIs
• In the beginning:
 - fixed function pipeline
 - Model-View and Projection Transformation
 - Predefined frames: model, object, camera, clip, ndc, window

• After deprecation
 - pipeline with programmable shaders
 - no transformations
 - clip, ndc window frames

• MV.js reintroduces original capabilities
Computer Viewing

• There are three aspects of the viewing process, all of which should be / are implemented in the pipeline,
 - Positioning the camera
 • Setting the model-view matrix
 - Selecting a lens
 • Setting the projection matrix
 - Clipping
 • Setting the view volume
The WebGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity (almost)
Hard-wired Projection

Hard-wired (default) projection is orthographic

clipped out

Projection plane

z=0
Moving the Camera Frame

• If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 • Translate the camera frame
 - Move the objects in the negative z direction
 • Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation $(\text{Translate}(0.0, 0.0, -d);)$
 - $d > 0$
Moving Camera back from Origin

frames after translation by \(-d\)
\(d > 0\)

default frames

(a)
(b)
Moving Camera back from Origin

frames after translation by $-d$

$d > 0$

default frames

World is actually being moved relative to camera frame.
Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations.
- Example: side view
 - Rotate the scene
 - Move it away from origin
 - Model-view matrix $C = TR$
WebGL code

• Remember that last transformation specified is first to be applied

```javascript
// Using MV.js
var t = translate(0.0, 0.0, -d);
var ry = rotateY(-90.0);
var m = mult(t, ry);
// or
var m = mult(translate (0.0, 0.0, -d),
             rotateY(-90.0););
```

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.

LookAt Function

LookAt(eye, at, up)

- **eye** - location of camera
- **at** - look-at point
- **up** - up vector

$$ (at_x, at_y, at_z) $$

$$ (up_x, up_y, up_z) $$

$$ (eye_x, eye_y, eye_z) $$
The LookAt Function

• The GLU library contained the function `gluLookAt` to form the required modelview matrix through a simple interface

• Note the need for setting an up direction
 - Should not be parallel to look-at direction

• Replaced by `lookAt()` in MV.js
 - Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes

```
var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);
var mv = lookAt(eye, at, up);
```
Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera

- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Projection
Projections and Normalization

• The default projection in the eye (camera) frame is orthographic

• For points within the default view volume

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]

• Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
Homogeneous Coordinate Representation

default orthographic projection

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]
\[w_p = 1 \]

\[M = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \]

In practice, we can let \(M = I \) and set the \(z \) term to zero later.
Simple Perspective

• Center of projection at the origin
• Projection plane $z = d$, $d < 0$
Perspective Equations

Consider top and side views

\[x_p = \frac{x}{z/d} \quad \quad y_p = \frac{y}{z/d} \quad \quad z_p = d \]
Homogeneous Coordinate Form

consider \(\mathbf{q} = \mathbf{M} \mathbf{p} \) where \(\mathbf{M} = \)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]

\[
\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} x/(z/d) \\ y/(z/d) \\ d \\ 1 \end{bmatrix}
\]
Perspective Division

• However $w \neq 1$, so we must divide by w to return from homogeneous coordinates

• This *perspective division* yields

\[
\begin{align*}
 x_p &= \frac{x}{z/d} \\
 y_p &= \frac{y}{z/d} \\
 z_p &= d
\end{align*}
\]

the desired perspective equations

• We will consider the corresponding clipping volume with MV.js functions that are equivalent to deprecated OpenGL functions
View Volumes

Are attached to the cameras!
WebGL Orthogonal Viewing

\texttt{ortho(left, right, bottom, top, near, far)}

\texttt{near} and \texttt{far} measured \textbf{from} camera

View volume specified in \textit{camera coordinates}
WebGL Perspective

frustum(left, right, bottom, top, near, far)

Specified in camera coordinates
Using Field of View

• With frustum it is often difficult to get the desired view

• perspective (fovy, aspect, near, far) often provides a better interface

\[\text{aspect} = \frac{w}{h} \]

front plane

\((z = -\text{near}) \)
Computing Matrices

• Compute in JS file, send to vertex shader with `gl.uniformMatrix4fv`
• Dynamic: update in `render()` or shader
var render = function() {
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
 eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
 radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));
 modelViewMatrix = lookAt(eye, at, up);
 projectionMatrix = perspective(fovy, aspect, near, far);
 gl.uniformMatrix4fv(modelViewMatrixLoc, false,
 flatten(modelViewMatrix));
 gl.uniformMatrix4fv(projectionMatrixLoc, false,
 flatten(projectionMatrix));
 gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
 requestAnimFrame(render);
}

in vec4 aPosition;
in vec4 aColor;
out vec4 vColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
 gl_Position = projectionMatrix*modelViewMatrix*aPosition;
 vColor = aColor;
}
Orthogonal Projection Matrices
Objectives

• Derive the projection matrices used for standard orthogonal projections
• Introduce oblique projections
• Introduce projection normalization
Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.

• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.
Pipeline View

- modelview transformation
- projection transformation
- perspective division

4D → 3D

nonsingular

vertex shader output

clipping

projection

against default cube

3D → 2D
Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)

• Normalization lets us clip against simple cube regardless of type of projection

• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
Orthographic Normalization

Ortho(left, right, bottom, top, near, far)

normalization \(\Rightarrow\) find transformation to convert specified clipping volume to default

\[
\begin{aligned}
&(right, top, -far) \\
&(1,1,1) \\
\end{aligned}
\]

\[
\begin{aligned}
&(left, bottom, -near) \\
&(-1,-1,-1) \\
\end{aligned}
\]

left < right bottom < top 0 < near < far
Orthographic Matrix

- Two steps
 - Move center to origin
 \[T\left(-\frac{\text{left}+\text{right}}{2}, -\frac{\text{bottom}+\text{top}}{2},(\text{near}+\text{far})/2\right) \]
 - Scale to have sides of length 2
 \[S\left(\frac{2}{\text{left}-\text{right}},\frac{2}{\text{top}-\text{bottom}},\frac{2}{\text{near}-\text{far}}\right) \]

\[
P = ST = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{2} \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & -\frac{\text{top} + \text{bottom}}{2} \\
0 & 0 & \frac{2}{\text{near} - \text{far}} & \frac{2}{\text{near} + \text{far}} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Final Projection

• Set $z = 0$

• Equivalent to the homogeneous coordinate transformation

\[M_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

• Hence, general orthographic projection in 4D is

\[P = M_{\text{orth}} \mathbf{ST} \]
Oblique Projections

- The OpenGL projection functions cannot produce general parallel projections such as
 ![Cube Image]

- However, if we look at the example of the cube, it appears that the cube has been sheared

- Oblique Projection = Shear + Orthographic Projection
General Shear

![Diagram of General Shear](image)

- **Back clipping plane**
- **Front clipping plane**
- **Projection plane**
- **DOP**
- **Top view**
- **Side view**

Shear Matrix

xy shear (z values unchanged)

$$H(\theta,\phi) = \begin{bmatrix} 1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projection matrix

$$P = M_{\text{orth}} H(\theta,\phi)$$

General case: $$P = M_{\text{orth}} STH(\theta,\phi)$$
Equivalency
Effect on Clipping

- The projection matrix $\mathbf{P} = \mathbf{STH}$ transforms the original clipping volume to the default clipping volume.

- The projection matrix projects the object onto the clipping volume.

- The top view shows the object at $z = 1$.

- The far plane is at $x = -1$.

- The near plane is at $x = 1$.

- The distorted object projects correctly on the default clipping volume.
Perspective Projection Matrices
Objectives

- Derive the perspective projection matrices used for standard WebGL projections
Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at \(z = -1 \), and a 90 degree field of view determined by the planes

\[
x = \pm z, \ y = \pm z
\]
Perspective Matrices

Simple projection matrix in homogeneous coordinates

\[
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
x' = x \quad x' = -x/z \\
y' = y \quad y' = -y/z \\
z' = z \quad z' = -1 \\
w' = -z
\]

Note that this matrix is independent of the far clipping plane
Generalization

\[N = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \alpha & \beta & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix} \]

\[x' = x \]
\[y' = y \]
\[z' = \alpha z + \beta \]
\[w' = -z \]

after perspective division, the point \((x, y, z, 1)\) goes to

\[x'' = -x/z \]
\[y'' = -y/z \]
\[z'' = -(\alpha + \beta/z) \]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\)
Defining α and β

If we define

$$z'' = -(\alpha + \beta/z)$$

$$\alpha = \frac{near + far}{near - far}$$

$$\beta = \frac{2 \times near \times far}{near - far}$$

the near plane is mapped to $z = -1$
the far plane is mapped to $z = 1$
and the sides are mapped to $x = \pm 1$, $y = \pm 1$

Hence the new clipping volume is the default clipping volume
Normalization Transformation

original clipping volume

original object

new clipping volume

distorted object projects correctly
Normalization and Hidden-Surface Removal

• Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if \(z_1 > z_2 \) in the original clipping volume then the for the transformed points \(z_1' > z_2' \)

• Thus hidden surface removal works if we first apply the normalization transformation

• However, the formula \(z'’ = -(\alpha + \beta/z) \) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small
WebGL Perspective

- **frustum** allows for an asymmetric viewing frustum (although **perspective** does not)

 \[\text{frustum}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]

 \[Z = Z_{\text{min}} \]

 \[(x_{\min}, y_{\min}, z_{\max}) \]

 \[(x_{\max}, y_{\max}, z_{\max}) \]

 COP

 - \text{left} < \text{right}
 - \text{bottom} < \text{top}
 - near < far
 - near & far positive
• **perspective** provides less flexible, but more intuitive perspective viewing

\[
\text{perspective}(\text{fov}, \text{aspect}, \text{near}, \text{far});
\]

• Field of view in angles
• aspect: \(w/h \)
• near < far, both positive
OpenGL Perspective Matrix

• The normalization in frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation

\[P = \text{NSH} \]

our previously defined perspective matrix \hspace{1cm} shear and scale
Why do we do it this way?

• Normalization allows for a single pipeline for both perspective and orthogonal viewing
• We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
• Simplifies clipping
Perspective Matrices

frustum

\[P = \begin{bmatrix}
\frac{2 \times \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} - \text{left}}{\text{right} - \text{left}} & 0 \\
0 & \frac{2 \times \text{near}}{\text{top} - \text{bottom}} & \frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} & 0 \\
0 & 0 & \frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -1 \\
0 & 0 & \frac{2 \times \text{far} \times \text{near}}{\text{far} - \text{near}} & 0
\end{bmatrix} \]

perspective

\[P = \begin{bmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & \frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{2 \times \text{far} \times \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix} \]
• It’s not too bad, thanks to Ed Angel
• In application

\[
\text{model}_\text{view} = \text{lookAt}(\text{eye, at, up});
\]

\[
\text{projection} = \text{ortho}(\text{left, right, bottom, top, near, far});
\]

or

\[
\text{projection} = \text{perspective}(\text{fov, aspect, near, far});
\]

• In vertex shader

\[
\text{gl_Position} = \text{projection}*\text{model_view}*\text{vPosition};
\]
Go to Assignment 5
Simple Mesh Format (SMF)

• Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

• Triangle data
• List of 3D vertices
• List of references to vertex array
define faces (triangles)

• Vertex indices begin at 1

#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
Reading a Local SMF File

• In html page

 `<input type = 'file' name='file' id = 'files'>`

• in js file

 `document.getElementById('files').onchange = function() {
 var file = this.files[0];
 var reader = new FileReader();
 reader.onload = function(){
 var lines = this.result.split('\n');
 for (var line = 0; line < lines.length; line++){
 var strings = lines[line].trimRight().split(' ');
 switch(strings[0]){
 case('v'): // do stuff
 break;
 case('f'): // do more stuff
 break;
 }
 }
 }
 };
 reader.readAsText(file);`
Normal for Triangle

plane \(n \cdot (p - p_0) = 0 \)

\[n = (p_1 - p_0) \times (p_2 - p_0) \]

normalize \(n \leftarrow n/|n| \)

Note that right-hand rule determines outward face
Flat Shading

• Define objects with TRIANGLES
• Vertices and colors are duplicated in buffers
• The three vertices of each triangle are assigned the same color
Flat Shading

• GLSL 3.0 supports a “flat” qualifier
• Each vertex has a unique color
• Triangle’s color is set to the last vertex’s color
• In vertex shader
 flat out vcolor;
• In fragment shader
 flat in vcolor;
Mesh Shading

• The previous example is not general because we knew the normal at each vertex analytically.

• For polygonal models, Gouraud proposed we use the average of the normals around a mesh vertex.

\[\mathbf{n} = \frac{(\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4)}{|\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|} \]
Calculating Normals

- Create vector structure (for normals) same size as vertex structure

- For each face
 - Calculate unit normal
 - Add to normals structure using vertex indices

- Normalize all the normal vectors
Suggestions for HW5

• Read in smf files & test with HW4
• Transform centroid of bounding box to origin
• Calculate normal for each triangle
• Use normalized normal as color for triangle
 - Be sure to take absolute value
• Each duplicated triangle vertex has its own color
 - This color is passed to the fragment shader
• Next implement LookAt feature
• Test with fixed eye point and orthographic projection
Suggestions for HW5

- Make sure that your model is in the view volume defined by your ortho() function
- Recall that your view volume is defined in camera coordinates
- Send model-view and projection matrix to the vertex shader via uniform variable
- Render with gl.TRIANGLES
- You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use

• Define menu that allows user to pick projection type

• Make camera move with a keyboard() function

• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)