Computer Viewing

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Positioning the Camera
Objectives

• Introduce the mathematics of projection
• Describe WebGL projection functions in MV.js
• Look at alternate viewing APIs
From the Beginning

• In the beginning:
 - fixed function pipeline
 - Model-View and Projection Transformation
 - Predefined frames: model, object, camera, clip, ndc, window

• After deprecation
 - pipeline with programmable shaders
 - no transformations
 - clip, ndc window frames

• MV.js reintroduces original capabilities
Computer Viewing

• There are three aspects of the viewing process, all of which should be / are implemented in the pipeline,
 - Positioning the camera
 • Setting the model-view matrix
 - Selecting a lens
 • Setting the projection matrix
 - Clipping
 • Setting the view volume
The WebGL Camera

• In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity

• The camera is located at origin and points in the negative z direction

• OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity (almost)
Hard-wired (default) projection is orthographic

projection plane $z=0$
Moving the Camera Frame

• If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 • Translate the camera frame
 - Move the objects in the negative z direction
 • Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation: \(\text{Translate}(0.0, 0.0, -d); \)
 \(-d > 0\)
Moving Camera back from Origin

frames after translation by \(-d\)
\(d > 0\)

default frames

(a)

(b)
Moving Camera back from Origin

frames after translation by \(-d\)

\(d > 0\)

default frames

World is actually being moved relative to camera frame.
Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations.
- Example: side view
 - Rotate the scene
 - Move it away from origin
 - Model-view matrix $C = TR$
• Remember that last transformation specified is first to be applied

```javascript
// Using MV.js
var t = translate(0.0, 0.0, -d);
var ry = rotateY(-90.0);
var m = mult(t, ry);
// or
var m = mult(translate (0.0, 0.0, -d),
            rotateY(-90.0));
```

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.
LookAt Function

LookAt(eye, at, up)
 eye - location of camera
 at - look-at point
 up - up vector

\[(up_x, up_y, up_z)\]

\[(at_x, at_y, at_z)\]
The GLU library contained the function `gluLookAt` to form the required modelview matrix through a simple interface.

- Note the need for setting an up direction
 - Should not be parallel to look-at direction
- Replaced by `lookAt()` in MV.js
 - Can concatenate with modeling transformations

Example: isometric view of cube aligned with axes

```javascript
var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);
var mv = lookAt(eye, at, up);
```
Other Viewing APIs

• The LookAt function is only one possible API for positioning the camera
• Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Projection
Projections and Normalization

• The default projection in the eye (camera) frame is orthographic

• For points within the default view volume

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]

• Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
Homogeneous Coordinate Representation

default orthographic projection

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]
\[w_p = 1 \]

\[p_p = Mp \]

\[M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \]

In practice, we can let \(M = I \) and set the \(z \) term to zero later.
Simple Perspective

- Center of projection at the origin
- Projection plane $z = d$, $d < 0$
Perspective Equations

Consider top and side views

\[
\begin{align*}
 x_p &= \frac{x}{z/d} \\
 y_p &= \frac{y}{z/d} \\
 z_p &= d
\end{align*}
\]
Homogeneous Coordinate Form

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]

consider \(\mathbf{q} = \mathbf{M} \mathbf{p} \) where

\[
\mathbf{M} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]

\[
\mathbf{q} =
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\Rightarrow
\mathbf{p} =
\begin{bmatrix}
x \\
y \\
z \\
z/d
\end{bmatrix} =
\begin{bmatrix}
x/(z/d) \\
y/(z/d) \\
d \\
1
\end{bmatrix}
\]
Perspective Division

• However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
• This *perspective division* yields

$$x_p = \frac{x}{z/d} \quad y_p = \frac{y}{z/d} \quad z_p = d$$

the desired perspective equations
• We will consider the corresponding clipping volume with MV.js functions that are equivalent to deprecated OpenGL functions
WebGL Orthogonal Viewing

\texttt{ortho(left, right, bottom, top, near, far)}

\texttt{near} and \texttt{far} measured \texttt{from} camera

View volume specified in camera coordinates
WebGL Perspective

frustum(left, right, bottom, top, near, far)

Specified in camera coordinates
Using Field of View

• With frustum it is often difficult to get the desired view
• perspective(fovy, aspect, near, far) often provides a better interface

```
\[
\text{aspect} = \frac{w}{h}
\]
```
Computing Matrices

- Compute in JS file, send to vertex shader with `gl.uniformMatrix4fv`
- Dynamic: update in `render()` or shader

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015
var render = function() {
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
 eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
 radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));
 modelViewMatrix = lookAt(eye, at, up);
 projectionMatrix = perspective(fovy, aspect, near, far);
 gl.uniformMatrix4fv(modelViewMatrixLoc, false,
 flatten(modelViewMatrix));
 gl.uniformMatrix4fv(projectionMatrixLoc, false,
 flatten(projectionMatrix));
 gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
 requestAnimFrame(render);
}
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
 gl_Position = projectionMatrix * modelViewMatrix * vPosition;
 fColor = vColor;
}
Orthogonal Projection Matrices
Objectives

• Derive the projection matrices used for standard orthogonal projections
• Introduce oblique projections
• Introduce projection normalization
Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.

• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.
Pipeline View

modelview transformation → projection transformation → perspective division

4D → 3D

nonsingular

clipping → projection

against default cube

3D → 2D

vertex shader output
Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)
• Normalization lets us clip against simple cube regardless of type of projection
• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
Orthographic Normalization

Ortho(left, right, bottom, top, near, far)

normalization ⇒ find transformation to convert specified clipping volume to default

left < right bottom < top near < far
Orthographic Matrix

• Two steps
 - Move center to origin
 \[T\left(-\frac{(left+right)}{2}, \frac{-bottom+top}{2}, \frac{(near+far)}{2}\right) \]
 - Scale to have sides of length 2
 \[S\left(\frac{2}{left-right}, \frac{2}{top-bottom}, \frac{2}{near-far}\right) \]

\[P = ST = \begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\
0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\
0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix} \]
Final Projection

- Set \(z = 0 \)
- Equivalent to the homogeneous coordinate transformation

 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 \(M_{\text{orth}} = \)

- Hence, general orthographic projection in 4D is

 \[
 P = M_{\text{orth}}ST
 \]
Oblique Projections

• The OpenGL projection functions cannot produce general parallel projections such as...

• However if we look at the example of the cube it appears that the cube has been sheared...

• Oblique Projection = Shear + Orthographic Projection
General Shear

![Diagram of General Shear](image)

- **Top view**
- **Side view**

Shear Matrix

\(xy \) shear (z values unchanged)

\[
H(\theta,\phi) = \begin{pmatrix}
1 & 0 & \cot \theta & 0 \\
0 & 1 & \cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Projection matrix

\[
P = M_{\text{orth}} \cdot H(\theta,\phi)
\]

General case: \(P = M_{\text{orth}} \cdot STH(\theta,\phi) \)
Equivalency
Effect on Clipping

• The projection matrix $P = STH$ transforms the original clipping volume to the default clipping volume

```
<table>
<thead>
<tr>
<th>DOP</th>
<th>top view</th>
<th>DOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>clipping</td>
<td></td>
<td>clipping</td>
</tr>
<tr>
<td>volume</td>
<td></td>
<td>volume</td>
</tr>
<tr>
<td>near plane</td>
<td>$x = -1$</td>
<td>far plane</td>
</tr>
<tr>
<td>object</td>
<td>$x = 1$</td>
<td>distorted</td>
</tr>
<tr>
<td>DOP</td>
<td>$z = -1$</td>
<td>object</td>
</tr>
<tr>
<td>object</td>
<td>$z = 1$</td>
<td>(projects correctly)</td>
</tr>
</tbody>
</table>
```

Perspective Projection Matrices
Objectives

• Derive the perspective projection matrices used for standard WebGL projections
Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at $z = -1$, and a 90 degree field of view determined by the planes

$$x = \pm z, \ y = \pm z$$
Perspective Matrices

Simple projection matrix in homogeneous coordinates

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
\begin{align*}
x' &= x & x' &= -x/z \\
y' &= y & y' &= -y/z \\
z' &= z & z' &= -1 \\
w' &= -z &
\end{align*}
\]

Note that this matrix is independent of the far clipping plane
Generalization

\[
N = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
x' = x \\
y' = y \\
z' = \alpha z + \beta \\
w' = -z
\]

after perspective division, the point \((x, y, z, 1)\) goes to

\[
x'' = -x/z \\
y'' = -y/z \\
z'' = -(\alpha + \beta/z)
\]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\)
Defining α and β

If we define

$$z'' = -(\alpha + \beta/z)$$

$$\alpha = \frac{\text{near} + \text{far}}{\text{near} - \text{far}}$$

$$\beta = \frac{2 \times \text{near} \times \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to $z = -1$
the far plane is mapped to $z = 1$
and the sides are mapped to $x = \pm 1$, $y = \pm 1$

Hence the new clipping volume is the default clipping volume
Normalization Transformation

original clipping volume

original object

COP

new clipping volume

distorted object projects correctly

$z = -x$

$z = x$

$z = -\text{far}$

$x = -1$

$z = 1$

$x = 1$

$z = -1$
Normalization and Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if \(z_1 > z_2 \) in the original clipping volume then the for the transformed points \(z'_1 > z'_2 \)

- Thus hidden surface removal works if we first apply the normalization transformation

- However, the formula \(z'' = - (\alpha + \beta/z) \) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small
WebGL Perspective

- **frustum** allows for an unsymmetric viewing frustum (although **perspective** does not)

 frustum(left, right, bottom, top, near, far)

 \[Z = Z_{\text{min}} \]

 \[(x_{\text{min}}, y_{\text{min}}, z_{\text{max}}) \]

 \[(x_{\text{max}}, y_{\text{max}}, z_{\text{max}}) \]

 left < right bottom < top near < far

 near & far positive
WebGL Perspective

- `perspective` provides less flexible, but more intuitive perspective viewing

 `perspective(fov, aspect, near, far);`

- Field of view in angles
- `aspect: w/h`
- `near < far, both positive`
OpenGL Perspective Matrix

- The normalization in frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation

\[P = NSH \]

our previously defined perspective matrix shear and scale
Why do we do it this way?

• Normalization allows for a single pipeline for both perspective and orthogonal viewing

• We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading

• Simplifies clipping
Perspective Matrices

frustum

\[
P = \begin{bmatrix}
\frac{2 * \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} - \text{left}}{\text{right} - \text{left}} & 0 \\
0 & \frac{2 * \text{near}}{\text{top} + \text{bottom}} & \frac{\text{top} + \text{bottom}}{\text{top} + \text{bottom}} & 0 \\
0 & 0 & \frac{-\frac{\text{far} + \text{near}}{\text{far} - \text{near}}}{-1} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

perspective

\[
P = \begin{bmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{2 * \text{far} * \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & -1
\end{bmatrix}
\]
• It’s not too bad, thanks to Ed Angel
• In application

```c
model_view = lookAt(eye, at, up);
projection = ortho(left, right, bottom, top, near, far);
```

or

```c
projection = perspective(fov, aspect, near, far);
```

• In vertex shader

```c
gl_Position = projection*model_view*vPosition;
```
Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

- Triangle data
- List of 3D vertices
- List of references to vertex array
define faces (triangles)
- Vertex indices begin at 1

```plaintext
#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
```
Normal for Triangle

The equation for the plane normal to a triangle is:

\[n \cdot (p - p_0) = 0 \]

To find the normal vector, we use the cross product of two vectors:

\[n = (p_2 - p_0) \times (p_1 - p_0) \]

After finding the normal vector, we normalize it:

\[n/|n| \]

Note that the right-hand rule determines which face is outward.
Suggestions for HW5

• Read in smf files & test with HW4
• Transform centroid of bounding box to origin
• Calculate normal for each triangle
• Use normalized normal as color for triangle
 - Be sure to take absolute value
• Each triangle vertex will need its own color
 - This color is passed to the fragment shader
• Next implement LookAt feature
• Test with fixed eye point and orthographic projection
Suggestions for HW5

• Make sure that your model is in the view volume defined by your ortho() function
• Recall that your view volume is defined in camera coordinates
• Send model-view and projection matrix to the vertex shader via uniform variable
• You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use

• Define menu that allows user to pick projection type

• Make camera move with a keyboard() function

• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)