Outline

• Drawing of 2D Curves
 – De Casteljau algorithm
 – Subdivision algorithm
 – Drawing parametric curves

The de Casteljau Algorithm

• How to compute a sequence of points that approximates a smooth curve given a set of control points?

• Developed by Paul de Casteljau at Citroën in the late 1950s

• Idea: recursively subdivide the curve and add points to refine the number of control points

Recall: Linear Interpolation

• Simple example
 – interpolating along the line between two points
 – (really an affine combination of points a and b)
 – \(x(t) = a + (b-a)t \)

Properties of Piecewise Linear Interpolations

• Given
 – continuous curve, \(C \)
 – piecewise linear interpolant (PLI) of \(C \)
 – and an arbitrary plane, \(P \)

• Then:
 The number of crossings of \(P \) by PLI is no greater than those of \(C \)

Linear Interpolation: Example 1

• Constructing a parabola using three control points

• From analytic geometry

\[
\text{ratio}(u, v, w) = \frac{(v-u)}{(w-u)}
\]

\[
\text{ratio}(b_0, b_1, b_2) = \text{ratio}(b_2', b_1', b_1) = \text{ratio}(b_1', b_2', b_1') = t
\]
The de Casteljau Algorithm

Basic case, with two points:
- Plotting a curve via repeated linear interpolation
 - Given \mathbf{P}_0 and \mathbf{P}_1 a sequence of control points
 - Simple case: Mapping a parameter u to the line

$$p(u) = (1-u)\mathbf{P}_0 + u\mathbf{P}_1 \quad \text{for} \quad 0 \leq u \leq 1$$

The de Casteljau Algorithm

Generalizing to three points
- Interpolate $\mathbf{P}_0\mathbf{P}_1$ and $\mathbf{P}_1\mathbf{P}_2$
- Interpolate along the resulting points

$$p_0(u) = (1-u)\mathbf{P}_0 + u\mathbf{P}_1$$
$$p_1(u) = (1-u)\mathbf{P}_1 + u\mathbf{P}_2$$

The de Casteljau Algorithm

The complete solution from the algorithm for three iterations:

$$p_{00}(u) = (1-u)\mathbf{P}_0 + u\mathbf{P}_1$$
$$p_{11}(u) = (1-u)\mathbf{P}_1 + u\mathbf{P}_2$$
$$p(u) = (1-u)p_{00}(u) + up_{11}(u)$$

The de Casteljau Algorithm

The solution after four iterations:

Input: $\mathbf{P}_0, \mathbf{P}_1, \ldots, \mathbf{P}_n \in \mathbb{R}^3$, $t \in \mathbb{R}$

Iteratively set:

$$p_r(t) = (1-t)p_{p_r-1}(t) + tp_{p_r+1-1}(t) \quad \left\{ r = 1, \ldots, n \right\}$$

and $p_n(t) = \mathbf{P}_n$

Then $p_r(t)$ is the point with parameter value t on the Bézier curve defined by the \mathbf{P}_i's

The de Casteljau Algorithm: Example Results

- Quartic curve (degree 4)
- 50 points computed on the curve
 - black points
- All intermediate control points shown
 - gray points
The de Casteljau Algorithm: Example Results

- A degree 6 curve
- 60 points computed on the curve
 - the black points
- Intermediate control points
 - the gray points

De Casteljau: Arc Segment Animation

De Casteljau: Cubic Curve Animation

De Casteljau: Loop Curve Animation

The de Casteljau Algorithm: Some Observations

- Interpolation along the curve is based only on u
- Drawing the curve’s pixels requires iterating over u at sufficient refinement
- What is the right increment? It’s not constant!
- Compute points and define a polyline

Subdivision

- Common in many areas of graphics, CAD, CAGD, vision
- Basic idea
 - primitives def’d by control polygons
 - set of control points is not unique
 - more than one way to compute a curve
 - subdivision refines representation of an object by introducing more control points
- Allows for local modification
- Subdivide to pixel resolution
Bézier Curve Subdivision

- Subdivision allows display of curves at different/adaptive levels of resolution
- Rendering systems (OpenGL, ActiveX, etc) only display polygons or lines
- Subdivision generates the lines/facets that approximate the curve/surface
 - output of subdivision sent to renderer

Bézier Curve Subdivision, with de Casteljau

- Calculate the value of \(x(u) \) at \(u = 1/2 \)
- This creates a new control point for subdividing the curve
- Use the two new edges to form control polygon for two new Bézier curves

Drawing Parametric Curves

Two basic ways:
- Iterative evaluation of \(x(t), y(t), z(t) \) for incrementally spaced values of \(t \)
 - can't easily control segment lengths and error
- Recursive Subdivision via de Casteljau, that stops when control points get sufficiently close to the curve
 - i.e. when the curve is nearly a straight line
- Use Bresenham to draw each line segment

Drawing Parametric Curves via Recursive Subdivision

- Idea: stop subdivision when segment is flat enough to be drawn w/ straight line
- Curve Flatness Test:
 - based on the convex hull
 - if \(d_1 \) and \(d_2 \) are both less than some \(\epsilon \), then the curve is declared flat

FYI: Computing the Distance from a Point to a Line

- Line is defined with two points
- Basic idea:
 - Project point \(P \) onto the line
 - Find the location of the projection
 \[
 d(P, L) = \frac{(y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}
 \]
Drawing Parametric Curves via Recursive Subdivision

The Algorithm:

- **DrawCurveRecSub**(curve, e)
 - If straight(curve, e) then **DrawLine**(curve)
 - Else
 - **SubdivideCurve**(curve, LeftCurve, RightCurve)
 - **DrawCurveRecSub**(LeftCurve, e)
 - **DrawCurveRecSub**(RightCurve, e)

Subdivision: Wave Curve

Bézier Curve: Degree Elevation

- Given a control polygon
- Generate additional control points, i.e. increase the degree of the curve
- Keep the curve the same
- In the limit, this converges to the curve defined by the original control polygon

Bezier Curve Drawing

- Given control points you can either ...
 - Iterate through \(t \) and evaluate formula
 - Iterate through \(t \) and use de Casteljau Algorithm
 - Successive interpolation of control polygon edges
 - Recursively subdivide de Casteljau polygons until they are approximately flat
 - Generate more control points with degree elevation until control polygon approximates curve

General Form of Bezier Curve

\[
Q(u) = \sum_{i=0}^{k} \binom{k}{i} (1 - u)^{k-i} u^i
\]

Control points: \(P_0, P_1, ..., P_{k+1} \) \(0 \leq u \leq 1 \)

Produces a point on curve \(Q \) at parameter value \(u \)

Programming Assignment 1

- Process command-line arguments
- Read in 3D control points
- Iterate through parameter space by du — for loop should use integer!
- At each u value evaluate Bezier curve formula to produce a sequence of 3D points
- Output points by printing them to the console as a polyline and control points as spheres in Open Inventor format