CS 536
Computer Graphics

Bezier Curve Drawing Algorithms
Week 2, Lecture 3
David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Outline

• Drawing of 2D Curves
 – De Casteljau algorithm
 – Subdivision algorithm
 – Drawing parametric curves

The de Casteljau Algorithm

• How to compute a sequence of points that approximates a smooth curve given a set of control points?
• Developed by Paul de Casteljau at Citroën in the late 1950s
• Idea: recursively subdivide the curve and add points to refine the number of control points

Recall: Linear Interpolation

• Simple example
 – interpolating along the line between two points
 – (really an affine combination of points a and b)
 – \(x(t) = a + (b-a)t \)

Properties of Piecewise Linear Interpolations

• Given
 – continuous curve, C
 – piecewise linear interpolant (PLI) of C
 – and an arbitrary plane, P
• Then:
 The number of crossings of P by PLI is no greater than those of C

Linear Interpolation: Example 1

• Constructing a parabola using three control points
• From analytic geometry

\[
\text{ratio}(u, v, w) = (v - u)/(w - u)
\]
\[
\text{ratio}(b_0, b_1, b_2) = \text{ratio}(b_1, b_2, b_3)
\]
The de Casteljau Algorithm

Basic case, with two points:
- Plotting a curve via repeated linear interpolation
 - Given \(p_0, p_1, \ldots \) a sequence of control points
 - Simple case: Mapping a parameter \(u \) to the line \(\overline{p_i p_j} \)
 \[
p(u) = (1-u)p_0 + up_1 \quad \text{for } 0 \leq u \leq 1.
\]

The de Casteljau Algorithm

Generalizing to three points:
- Interpolate \(p_0, p_1, \) and \(p_2 \)
 - Interpolate along the resulting points
 \[
p_0(u) = (1-u)p_0 + up_1

p_2(u) = (1-u)p_1 + up_2.
\]

The de Casteljau Algorithm

The complete solution from the algorithm for three iterations:

\[
p_0(u) = (1-u)p_0 + up_1

p_1(u) = (1-u)p_1 + up_2

p(u) = (1-u)p_0(u) + up_1(u)
\]

The de Casteljau Algorithm

Input:
- Iteratively set:
 \[
p_{i+1}(t) = (1-t)p_i(t) + tp_{i+1}(t)
 \]
 and \(p_{n}(t) = p_i \)

Then \(p_i(t) \) is the point with parameter value \(t \) on the Bézier curve defined by the \(p_i \)’s.

The de Casteljau Algorithm

Example Results

- Quartic curve (degree 4)
- 50 points computed on the curve
 - black points
- All intermediate control points shown
 - gray points
The de Casteljau Algorithm: Example Results

- A degree 6 curve
- 60 points computed on the curve
 - the black points
- Intermediate control points
 - the gray points

De Casteljau: Arc Segment Animation

De Casteljau: Cubic Curve Animation

De Casteljau: Loop Curve Animation

The de Casteljau Algorithm: Some Observations

- Interpolation along the curve is based only on u
- Drawing the curve's pixels requires iterating over u at sufficient refinement
- What is the right increment? It's not constant!
- Compute points and define a polyline

Subdivision

- Common in many areas of graphics, CAD, CAGD, vision
- Basic idea
 - primitives defined by control polygons
 - set of control points is not unique
 - more than one way to compute a curve
- Subdivision refines representation of an object by introducing more control points
- Allows for local modification
- Subdivide to pixel resolution
Bézier Curve Subdivision

- Subdivision allows display of curves at different/adaptive levels of resolution
- Rendering systems (OpenGL, ActiveX, etc) only display polygons or lines
- Subdivision generates the lines/facets that approximate the curve/surface
 – output of subdivision sent to renderer

Bézier Curve Subdivision, with de Casteljau

- Calculate the value of \(x(u) \) at \(u = 1/2 \)
- This creates a new control point for subdividing the curve
- Use the two new edges to form control polygon for two new Bezier curves

Bézier Curve Subdivision

- Observe subdivision:
 – does not affect the shape of the curve
 – partitions one curve into several curved pieces with (collectively) the same shape

Drawing Parametric Curves

- Two basic ways:
 - **Iterative evaluation** of \(x(t), y(t), z(t) \) for incrementally spaced values of \(t \)
 – can’t easily control segment lengths and error
 - **Recursive Subdivision** via de Casteljau, that stops when control points get sufficiently close to the curve
 – i.e. when the curve is nearly a straight line
 - Use Bresenham to draw each line segment

Drawing Parametric Curves via Recursive Subdivision

- Idea: stop subdivision when segment is flat enough to be drawn with straight line
- **Curve Flatness Test**:
 – based on the convex hull
 – if \(d_2 \) and \(d_3 \) are both less than some \(\varepsilon \), then the curve is declared flat

FYI: Computing the Distance from a Point to a Line

- Line is defined with two points
- Basic idea:
 – Project point \(P \) onto the line
 – Find the location of the projection
 \[
 d(P, L) = \frac{(y_1 - y_2)x + (x_1 - x_2)y + (x_0y_1 - x_1y_0)}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}
 \]
Drawing Parametric Curves via Recursive Subdivision

The Algorithm:
- DrawCurveRecSub(curve,e)
 - If straight(curve,e) then DrawLine(curve)
 - Else
 - SubdivideCurve(curve,LeftCurve,RightCurve)
 - DrawCurveRecSub(LeftCurve,e)
 - DrawCurveRecSub(RightCurve,e)

Subdivision: Wave Curve

Bézier Curve: Degree Elevation
- Given a control polygon
- Generate additional control points, i.e.
 increase the degree of the curve
- Keep the curve the same
- In the limit, this converges to the curve
 defined by the original control polygon

Bezier Curve Drawing
- Given control points you can either ...
 - Iterate through t and evaluate formula
 - Iterate through t and use de Casteljau
 Algorithm
 - Successive interpolation of control polygon edges
 - Recursively subdivide de Casteljau polygons until they are approximately flat
 - Generate more control points with degree elevation until control polygon approximates curve

General Form of Bezier Curve

\[
Q(u) = \sum_{i=0}^{k} P_{i+1} \binom{k}{i} (1-u)^{k-i} u^i
\]

Control points: \(P_0, P_1, \ldots, P_{k+1}\); \(0 \leq u \leq 1\)
Produces a point on curve \(Q\) at parameter value \(u\)

Programming Assignment 1
- Process command-line arguments
- Read in 3D control points
- Iterate through parameter space by \(du\)
- At each \(u\) value evaluate Bezier curve formula to produce a sequence of 3D points
- Output points by printing them to the console as a polyline and control points
 as spheres in Open Inventor format