CS 536
Computer Graphics

Hermite and Catmull-Rom Curves
Week 2, Lecture 4
David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Additional slides from Don Fussell, University of Texas and Steve Marschner, Cornell University

Outline
• Hermite Curves
• Continuity
• Catmull-Rom Curves

Hermite Curve
• 3D curve of polynomial bases
• Geometrically defined by position and tangents at end points
• No convex hull guarantees
• Supports tangent-continuous (C¹) composite curves

Algebraic Representation
• All of these curves are just parametric algebraic polynomials expressed in different bases
• Parametric cubic curve (in R³)
 \[P(u) = au^3 + bu^2 + cu + d \]

 First derivative of curve
 \[P'(u) = 3au^2 + 2bu + c \]

 Solving for the coefficients:
 \[a = 3p(0) - 2p(1) + p'(0) + p''(1) \]
 \[b = -3p(0) + 3p(1) - 2p'(0) - p''(1) \]
 \[c = p'(0) \]
 \[d = p(0) \]
Hermite Curves

- Putting it all together
 \[P(u) = au^3 + bu^2 + cu + d \]
 \[a = 2p(0) - 2p(1) + p''(0) + p''(1) \]
 \[b = -3p(0) + 3p(1) - 2p''(0) - p''(1) \]
 \[c = p''(0) \]
 \[d = p(0) \]
 \[P(u) = (2u^3 - 3u^2 + 1)p(0) + (-2u^2 + 3u)p(1) + (u^2 - 2u + 1)p''(0) + (u - 1)p''(1) \]

Blending Functions

- At \(u = 0 \):
 - \(H_1 = 1, H_2 = H_3 = H_4 = 0 \)
 - \(H_1' = H_2' = H_3' = H_4' = 0, H_5' = 1 \)
 \[P(0) = p0 \]
 \[P'(0) = T0 \]

- At \(u = 1 \):
 - \(H_1 = H_2 = H_3 = H_4 = 0, H_5 = 1 \)
 - \(H_1' = H_2' = H_3' = H_4' = 0, H_5' = 1 \)
 \[P(1) = p1 \]
 \[P'(1) = T1 \]

Hermite and Algebraic Forms

- Putting it all together produces the matrix formulation for the Hermite curve \(P(u) \)
 \[P(u) = GMu \]
 \[P'(u) = GBH \]

- \(M \) transforms geometric coefficients ("coordinates") from the Hermite basis to the algebraic coefficients of the monomial basis

Hermite Basis

- Substituting for the coefficients and collecting terms gives
 \[P(u) = (2u^3 - 3u^2 + 1)p(0) + (-2u^2 + 3u)p(1) + (u^2 - 2u + 1)p''(0) + (u - 1)p''(1) \]

- Call
 \[H_1(u) = (2u^3 - 3u^2 + 1) \]
 \[H_2(u) = (-2u^2 + 3u) \]
 \[H_3(u) = (u^2 - 2u + 1) \]
 \[H_4(u) = (u - 1) \]

the Hermite blending functions or basis functions

- Then \(P(u) = H_1(u)p(0) + H_2(u)p(1) + H_3(u)p''(0) + H_4(u)p''(1) \)

Hermite Curves - Matrix Form

- Putting this in matrix form
 \[H = \begin{bmatrix}
 H_1(u) & H_2(u) & H_3(u) & H_4(u)
 \end{bmatrix} \]
 \[= \begin{bmatrix}
 2 & -3 & 0 & 1 \\
 1 & -2 & 1 & 0 \\
 1 & -1 & 0 & 1
 \end{bmatrix}u^3 \\
 \begin{bmatrix}
 0 & 0 & 0 & 0
 \end{bmatrix}u^2 \\
 \begin{bmatrix}
 0 & 0 & 0 & 0
 \end{bmatrix}u \\
 \begin{bmatrix}
 0 & 0 & 0 & 0
 \end{bmatrix}
 \]
 \[= M_u U \]

- \(M_u \) is called the Hermite characteristic matrix

- Collecting the Hermite geometric coefficients into a geometry vector \(G \),
 \[G = [p(0) \quad p(1) \quad p''(0) \quad p''(1)] \]

Hermite Curves

- Geometrically defined by position and tangents at end points
Hermite to Bézier

- Mixture of points and vectors is awkward and unintuitive
- Specify tangents as differences of points

\[p_0 = q_0; \quad p_3 = q_1; \]
\[p_1 = q_0 + (1/3)t_0; \quad p_2 = q_1 - (1/3)t_1 \]

- note derivative is defined as 3 times offset

Bezizer to Hermite

\[q_0 = p_0; \quad q_1 = p_3; \]
\[t_0 = 3(p_1 - p_0); \quad t_1 = 3(p_3 - p_2); \]

- note derivative is defined as 3 times offset

Issues with Bézier Curves

- Creating complex curves requires many control points
 - potentially a very high-degree polynomial with many wiggles
- Bézier blending functions have global support over the whole curve
 - move just one point, change whole curve
- Improved Idea: link \((C^1)\) lots of low degree (cubic) Bézier curves end-to-end

Continuity

Two types:
- Geometric Continuity, \(G\):
 - endpoints meet
 - tangent vectors’ directions are equal
- Parametric Continuity, \(C\):
 - endpoints meet
 - tangent vectors’ directions are equal
 - tangent vectors’ magnitudes are equal
- In general: \(C\) implies \(G\) but not vice versa
Parametric Continuity

- **Continuity** (recall from the calculus):
 - Two curves are C^i continuous at a point p iff the i-th derivatives of the curves are equal at p

Continuity

- What are the conditions for C^0 and C^1 continuity at the joint of curves x' and x''?
 - Tangent vectors at end points equal
 - End points equal

$$Q'(1) = Q'(0), \quad \frac{dQ}{dt}(1) = \frac{dQ}{dt}(0)$$

Chaining Bézier curves

- No continuity built in
- Achieve C^1 using collinear control points around join points

Catmull-Rom splines

- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite
 - In fact, all splines of this form are equivalent
- First example of a spline based on just an input point sequence
- Does not have convex hull property
- Only has C^1 continuity
Catmull-Rom splines

- A sequence of Hermite/Bezier curves
- Would like to define tangents automatically
 - use adjacent control points
- end tangents: user-defined or fit a parabola

Catmull-Rom splines

- Tangents are \((p_{k+1} - p_{k-1})/2\) for interior control points
- User specifies tangents at first \((T_0)\) and last \((T_N)\) input points
- Or fit parabola to first/last 3 points

 \[
 q_0 = p_k \\
 q_1 = p_{k+1} \\
 t_0 = 0.5(p_{k+1} - p_{k-1}) \\
 t_1 = 0.5(p_{k+2} - p_k)
 \]

Adding tension

- Adding tension to Catmull-Rom spline involves adjusting tangents at interior join points, \(p_i\)

 \[
 t_0 = (1 - T)0.5(p_{k+1} - p_{k-1}) \\
 t_1 = (1 - T)0.5(p_{k+2} - p_k)
 \]

- When \(T=0\), standard C-R spline
- When \(T=1\), tangent is zero

Adding tension

- Scale user-provided tangent vectors

 \[
 T_0' = (1 - T) T_0 \\
 T_N' = (1 - T) T_N
 \]

Programming Assignment 2

- Process command-line arguments
- Read in 3D input points and tangents
- Compute Bezier control points for curves defined by each two input points
- Modify tangents with tension parameter
- Use HW1 code to compute points on each Bezier curve
- Each Bezier curve should be a polyline
- Output points by printing them to the console as an IndexedLineSet with multiple polylines, and control points as spheres in Open Inventor format