Hermite and Catmull-Rom Curves

Week 2, Lecture 4

David Breen, William Regli and Maxim Peysakhov

Department of Computer Science
Drexel University

Additional slides from Don Fussell, University of Texas, Steve Marschner, Cornell University and Sun-Jeong Kim, Hallym University
Outline

• Hermite Curves
• Continuity
• Catmull-Rom Splines
• C^2 Piecewise Splines
Hermite Curve

• 3D curve of polynomial bases
• Geometrically defined by position and tangents at end points
• No convex hull guarantees
• Supports tangent-continuous (C^1) composite curves
Algebraic Representation

• All of these curves are just parametric algebraic polynomials expressed in different bases
• Parametric cubic curve (in \mathbb{R}^3)

\[P(u) = au^3 + bu^2 + cu + d \]

• First derivative of curve

\[P'(u) = 3au^2 + 2bu + c \]

\[
\begin{align*}
x &= a_x u^3 + b_x u^2 + c_x u + d_x \\
y &= a_y u^3 + b_y u^2 + c_y u + d_y \\
z &= a_z u^3 + b_z u^2 + c_z u + d_z \\
x &= 3a_x u^2 + 2b_x u + c_x \\
y &= 3a_y u^2 + 2b_y u + c_y \\
z &= 3a_z u^2 + 2b_z u + c_z
\end{align*}
\]
Algebraic Representation

- All of these curves are just parametric algebraic polynomials expressed in different bases
- Parametric cubic curve (in \mathbb{R}^3)

$$P(u) = au^3 + bu^2 + cu + d$$

- First derivative of curve

$$P'(u) = 3au^2 + 2bu + c$$

$$P(0) = d$$

$$P(1) = a + b + c + d$$

$$P^u(0) = c$$

$$P^u(1) = 3a + 2b + c$$

D. Fussell – UT, Austin
Hermite Curves

• 12 degrees of freedom (4 3-d vector constraints)
• Specify endpoints and tangent vectors at endpoints

\[P(0) = d \]
\[P(1) = a + b + c + d \]
\[P''(0) = c \]
\[P''(1) = 3a + 2b + c \]

• Solving for the coefficients:

\[a = 2p(0) - 2p(1) + p''(0) + p''(1) \]
\[b = -3p(0) + 3p(1) - 2p''(0) - p''(1) \]
\[c = p''(0) \]
\[d = p(0) \]
Hermite Curves

• Putting it all together

\[P(u) = au^3 + bu^2 + cu + d \]

\[a = 2p(0) - 2p(1) + p^u(0) + p^u(1) \]
\[b = -3p(0) + 3p(1) - 2p^u(0) - p^u(1) \]
\[c = p^u(0) \]
\[d = p(0) \]

\[P(u) = (2u^3 - 3u^2 + 1)p(0) + (-2u^3 + 3u^2)p(1) + (u^3 - 2u^2 + u)p^u(0) + (u^3 - u^2)p^u(1) \]
Hermite Basis

- Substituting for the coefficients and collecting terms gives

 \[P(u) = (2u^3 - 3u^2 + 1)p(0) + (-2u^3 + 3u^2)p(1) + (u^3 - 2u^2 + u)p''(0) + (u^3 - u^2)p''(1) \]

- Call

 \[H_1(u) = (2u^3 - 3u^2 + 1) \]
 \[H_2(u) = (-2u^3 + 3u^2) \]
 \[H_3(u) = (u^3 - 2u^2 + u) \]
 \[H_4(u) = (u^3 - u^2) \]

 the Hermite blending functions or basis functions

- Then

 \[P(u) = H_1(u)p(0) + H_2(u)p(1) + H_3(u)p''(0) + H_4(u)p''(1) \]
Blending Functions

\[P(u) = (2u^3 - 3u^2 + 1)p(0) + (-2u^3 + 3u^2)p(1) + (u^3 - 2u^2 + u)p''(0) + (u^3 - u^2)p''(1) \]

\[P'(u) = (6u^2 - 6u)p(0) + (-6u^2 + 6u)p(1) + (3u^2 - 4u + 1)p''(0) + (3u^2 - 2u)p''(1) \]

- **At** \(u = 0 \):
 - \(H_1 = 1, H_2 = H_3 = H_4 = 0 \)
 - \(H_1' = H_2' = H_4' = 0, H_3' = 1 \)

- **At** \(u = 1 \):
 - \(H_1 = H_3 = H_4 = 0, H_2 = 1 \)
 - \(H_1' = H_2' = H_3' = 0, H_4' = 1 \)
Hermite Curves - Matrix Form

• Putting this in matrix form

\[\mathbf{H} = \begin{bmatrix} H_1(u) & H_2(u) & H_3(u) & H_4(u) \end{bmatrix} \]

\[= \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} u^3 \\ u^2 \\ u \\ 1 \end{bmatrix} \]

\[= \mathbf{M}_H \mathbf{U} \]

• \(\mathbf{M}_H \) is called the Hermite characteristic matrix

• Collecting the Hermite geometric coefficients into a geometry vector \(\mathbf{G} \),

\[\mathbf{G} = [p(0) \quad p(1) \quad p'(0) \quad p'(1)] \]

D. Fussell – UT, Austin
Hermite and Algebraic Forms

• Putting it all together produces the matrix formulation for the Hermite curve $P(u)$

\[
P(u) = GM_H U
\]

\[
P(u) = GB_H
\]

• M_H transforms geometric coefficients ("coordinates") from the Hermite basis to the algebraic coefficients of the monomial basis
Hermite Curves

- Geometrically defined by position and tangents at end points
Hermite to Bézier

- Mixture of points and vectors is awkward and unintuitive
- Specify tangents as differences of points
Hermite to Bézier

\[p_0 = q_0; \quad p_3 = q_1; \]
\[p_1 = q_0 + \frac{1}{3}t_0; \quad p_2 = q_1 - \frac{1}{3}t_1 \]

– note derivative is defined as 3 times offset
Beziers to Hermite

\[q_0 = p_0; \quad q_1 = p_3; \]
\[t_0 = 3(p_1 - p_0); \quad t_1 = 3(p_3 - p_2); \]

– note derivative is defined as 3 times offset
Back to Bézier Curves

- $k+1$ control points defines a degree k curve
- Endpoint interpolation
- Convex hull property
Issues with Bézier Curves

• Creating complex curves requires many control points
 – potentially a very high-degree polynomial with many wiggles

• Bézier blending functions have global support over the whole curve
 – move just one point, change whole curve

• Improved Idea: link \(C^1 \) lots of low degree (cubic) Bézier curves end-to-end
Continuity

Two types:

• Geometric Continuity, G^i:
 – endpoints meet
 – tangent vectors’ directions are equal

• Parametric Continuity, C^i:
 – endpoints meet
 – tangent vectors’ directions are equal
 – tangent vectors’ magnitudes are equal

• In general: C implies G but not vice versa
Parametric Continuity

- **Continuity** (recall from the calculus):
 - Two curves are C^i continuous at a point p iff the i-th derivatives of the curves are equal at p
Continuity

- What are the conditions for C^0 and C^1 continuity at the joint of curves x^l and x^r?
 - tangent vectors at end points equal
 - end points equal

$$Q^l(1) = Q^r(0), \quad \frac{dQ^l}{dt}(1) = \frac{dQ^r}{dt}(0)$$
Continuity

- The derivative of $Q(t)$ is the parametric tangent vector of the curve:

$$\frac{d}{dt} Q(t) = Q'(t) = \left[\frac{d}{dt} x(t) \quad \frac{d}{dt} y(t) \quad \frac{d}{dt} z(t) \right]^T = \frac{d}{dt} C \cdot T = C \cdot \left[\begin{array}{ccc} 3t^2 & 2t & 1 & 0 \end{array} \right]^T =$$

$$\left[\begin{array}{ccc} 3a_x t^2 + 2b_x t + c_x & 3a_y t^2 + 2b_y t + c_y & 3a_z t^2 + 2b_z t + c_z \end{array} \right]^T$$
Continuity

• In 3D, compute this for each component of the parametric function
 – For the x component:

\[x^l(1) = x^r(0) = P_{4x}, \quad \frac{d}{dt}x^l(1) = 3(P_{4x} - P_{3x}), \quad \frac{d}{dt}x^r(0) = 3(P_{5x} - P_{4x}) \]

• Similar for the y and z components.
Chaining Bézier curves

- No continuity built in
- Achieve C^1 using collinear control points around join points
Catmull-Rom splines

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite
 – in fact, all splines of this form are equivalent
• First example of a spline based on just an input point sequence
• Does not have convex hull property
• Only has C1 continuity
Catmull-Rom splines

• A sequence of Hermite/Bezier curves
• Would like to define tangents automatically
 – use adjacent control points
 – end tangents: user-defined or fit a parabola
Catmull-Rom splines

- Tangents are \((p_{k+1} - p_{k-1}) / 2\) for interior control points \((p_k)\)
- User specifies tangents at first \((T_0)\) and last \((T_N)\) input points
- Or fit parabola to first/last 3 points

\[
q_0 = p_k \\
q_1 = p_{k+1} \\
t_0 = 0.5(p_{k+1} - p_{k-1}) \\
t_1 = 0.5(p_{k+2} - p_k)
\]
Adding tension

• Adding tension to Catmull-Rom spline involves adjusting tangents at interior join points, p_i

\[t_0 = (1 - T)0.5(p_{k+1} - p_{k-1}) \]

\[t_1 = (1 - T)0.5(p_{k+2} - p_k) \]

• When $T=0$, standard C-R spline

• When $T=1$, tangent is zero
Adding tension

- Scale user-provided tangent vectors
 - $\mathcal{T}_0' = (1 - T) \mathcal{T}_0$
 - $\mathcal{T}_N' = (1 - T) \mathcal{T}_N$
Adding Tension

Figure 7. Bending of the curve under various tensions.
Curvature (C^2) Continuity

• Q: Suppose you want even higher degrees of continuity - e.g., not just slopes but curvatures - what additional geometric constraints are imposed?

\[Q_n(0) = Q_{n-1}(1), \quad Q_n(1) = Q_{n+1}(0) \]
\[Q'_n(0) = Q'_{n-1}(1), \quad Q'_n(1) = Q'_{n+1}(0) \]
\[Q''_n(0) = Q''_{n-1}(1), \quad Q''_n(1) = Q''_{n+1}(0) \]

• We’ll begin by developing some more mathematics.....
Specializing to n=3

- What’s the derivative $Q'(u)$ for a cubic Bezier curve?
 $$Q'(u) = 3(uD + (1-u))^2(D-1)V_0$$
 $$\begin{align*}
 Q'(0) &= 3(D-1)V_0 \\
 Q'(1) &= 3D^2(D-1)V_0
 \end{align*}$$

- Note that:
 - When $u=0$: $Q'(u) = 3(V_1 - V_0)$
 - When $u=1$: $Q'(u) = 3(V_3 - V_2)$

- **Geometric interpretation:**

- So for C^1 continuity, we need to set:
 $$3(V_3 - V_2) = 3(W_1 - W_0)$$
Second-Order Continuity

- So the conditions for second-order continuity are:
 \[(v_3 - v_2) = (w_1 - w_0)\]
 \[(v_3 - v_2) - (v_2 - v_1) = (w_2 - w_1) - (w_1 - w_0)\]

- Putting these together gives:
 \[w_0 = v_3\]
 \[w_1 = (v_3 - v_2) + w_0 = 2v_3 - v_2\]
 \[w_2 = 2(v_3 - v_2) - (v_2 - v_1) + w_1 = v_1 - 4v_2 + 4v_3\]

- Geometric interpretation
Creating Continuous Splines

- We’ll look at three ways to specify splines with C^1 and C^2 continuity
 - C^2 interpolating splines
 - B-splines
 - Catmull-Rom splines
\(C^2 \) Interpolating Splines

- The control points specified by the user, called "joints", are interpolated by the spline.

- For each of x and y, we needed to specify 3 conditions for each cubic Bezier segment.

- So if there are m segments, we'll need 3m-1 conditions.

- Q: How many these constraints are determined by each joint?
In-Depth Analysis, cont.

- At each interior joint j, we have:
 - Last curve ends at j
 - Next curve begins at j
 - Tangents of two curves at j are equal
 - Curvature of two curves at j are equal
- The m segments give:
 - $m-1$ interior joints
 - 3 conditions
- The 2 end joints give 2 further constraints:
 - First curve begins at first joint
 - Last curve ends at last joint
- Gives $3m-1$ constraints altogether
End Conditions

- The analysis shows that specifying $m+1$ joints for m segments leaves 2 extra degree of freedom.
- These 2 extra constraints can be specified in a variety of ways:
 - An interactive system
 - Constraints specified as user inputs
 - "Natural" cubic splines
 - Second derivatives at endpoints defined to be 0
 - Maximal continuity
 - Require C^3 continuity between first and last pairs of curves
C^2 Interpolating Splines

- Problem: Describe an interactive system for specifying C^2 interpolating splines
- Solution:
 - 1. Let user specify first four Bezier control points
 - 2. This constraints next 2 control points - draw these in.
 - 3. User then picks 1 more
 - 4. Repeat steps 2-3.
Another Explanation

- Define the first Bezier curve
 - \((V_0, V_1, V_2, V_3) \)
- Next Bezier curve \((W_0, W_1, W_2, W_3) \) has 3 constraints
 - \(Q_n(1)=Q_{n+1}(0), \, Q_n'(1)=Q_{n+1}'(0) \)
 - \(Q_n''(1)=Q_{n+1}''(0) \)
- It only has 1 degree of freedom
 - The location of its last control point \((W_3) \)
Stringing Together C^2 Cubic Bezier Curves
Global vs. Local Control

- These C^2 interpolating splines yield only "global control" - moving any one joint (or control point) changes the entire curve!
- Global control is problematic:
 - Makes splines difficult to design
 - Makes incremental display inefficient
- There's a fix, but nothing comes for free. Two choices:
 - B-splines
 - Keep C^2 continuity
 - Give up interpolation
 - Catmull-Rom Splines
 - Keep interpolation
 - Give up C^2 continuity - provides C^1 only
Programming Assignment 2

- Process command-line arguments
- Read in 3D input points and tangents
- Compute tangents at interior input points
- Modify tangents with tension parameter
- Compute Bezier control points for curves defined by each two input points
- Use HW1 code to compute points on each Bezier curve
- Each Bezier curve should be a polyline
- Output points by printing them to the console as an IndexedLineSet with multiple polylines, and control points as spheres in Open Inventor format