CS 536
Computer Graphics

B-Splines and NURBS
Week 4, Lecture 5

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Outline

• More Types of Curves
 – Splines
 – B-splines
 – NURBS
• Knot sequences
• Effects of the weights

Splines

• Popularized in late 1960s in US Auto industry (GM)
 – R. Riesenfeld (1972)
 – W. Gordon
• Origin: the thin wood or metal strips used in building/ship construction
• Goal: define a curve as a set of piecewise simple polynomial functions connected together

Natural Splines

• Mathematical representation of physical splines
• C^2 continuous
• Interpolate all control points
• Have Global control (no local control)

B-splines: Basic Ideas

• Similar to Bézier curves
 – Smooth blending function times control points
• But:
 – Blending functions are non-zero over only a small part of the parameter range (giving us local support)
 – When nonzero, they are the “concatenation” of smooth polynomials. (They are piecewise!)

B-spline: Benefits

• User defines degree
 – Independent of the number of control points
• Produces a single piecewise curve of a particular degree
 – No need to stitch together separate curves at junction points
• Continuity comes for free!
B-splines

- Defined similarly to Bézier curves
 - p_i are the control points
 - Computed with basis functions (Basis-splines)
- B-spline basis functions are blending functions
- Each point on the curve is defined by the blending of the control points
 (B_i is the i-th B-spline blending function)

$$p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i$$
- No limits on the value of t
- B_i is zero for most values of t!

B-spline Blending Functions

- $B_{i,0}(t)$ is a step function that is 1 in the interval $[u_k, u_{k+1})$
- $B_{i,1}(t)$ spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)
- $B_{i,2}(t)$ spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0
- $B_{i,3}(t)$ is a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0

Transitions at Knots

- As one blending function goes to zero, another smoothly becomes non-zero

B-spline: Cox-deBoor Recursion

- Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
- Let $B_{i,d}(t)$ denote the i-th blending function for a B-spline of degree d, then:

$$B_{i,d}(t) = \begin{cases} 1, & \text{if } t_k \leq t < t_{k+1} \\ 0, & \text{otherwise} \end{cases}$$

$$B_{i,d}(t) = \frac{t-t_k}{t_{k+1}-t_k} B_{i,d-1}(t) + \frac{t_{k+1}-t}{t_{k+1}-t_k} B_{i+1,d-1}(t)$$

B-spline Blending Functions: Example for 2nd Degree Splines

- Note: can’t define a polynomial with these properties (both 0 and non-zero for ranges)
- Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function

B-spline Blending Functions: Example for 3rd Degree Splines

- Observe:
 - in $t=0$ to $t=1$ range just four of the functions are non-zero
 - all are ≥ 0 and sum to 1, hence the convex hull property holds for each curve segment of a B-spline

B-spline: Cox-deBoor Recursion

- Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
- Let $B_{i,d}(t)$ denote the i-th blending function for a B-spline of degree d, then:

$$B_{i,d}(t) = \begin{cases} 1, & \text{if } t_k \leq t < t_{k+1} \\ 0, & \text{otherwise} \end{cases}$$

$$B_{i,d}(t) = \frac{t-t_k}{t_{k+1}-t_k} B_{i,d-1}(t) + \frac{t_{k+1}-t}{t_{k+1}-t_k} B_{i+1,d-1}(t)$$

Transitions at Knots

- As one blending function goes to zero, another smoothly becomes non-zero
Example: Creating a B-spline Curve Segment

B-splines: Knot Selection

• Instead of working with the parameter space \(0 \leq t \leq 1\), use \(t_{\min} \leq t_0 \leq t_1 \leq t_2 \ldots \leq t_{m-1} \leq t_{\max}\)

• The knot points
 – joint points between curve segments, \(Q\)
 – Each has a knot value
 – \(m-1\) knots for \(m+1\) points

Uniform B-splines: Setting the Options

• Specified by
 – \(m \geq 3\) control points, \(P_0 \ldots P_m\)
 – \(m+1\) cubic polynomial curve segments, \(Q_3 \ldots Q_m\)
 – \(m-1\) knot points, \(t_3 \ldots t_{m+1}\)
 – segments \(Q_i\) of the B-spline curve
 • defined over a knot interval \([t_{i-1}, t_i]\)
 • defined by 4 of the control points, \(P_{i-3} \ldots P_i\)
 – segments \(Q_i\) of the B-spline curve are blended together into smooth transitions via (the new & improved) blending functions

Example: Creating a B-spline

B-splines: Knot Sequences

• Even distribution of knots
 – uniform B-splines
 – Curve does not interpolate end points
 • first blending function not equal to 1 at \(t=0\)
 – Uneven distribution of knots
 – non-uniform B-splines
 – Allows us to tie down the endpoints by repeating knot values
 (in Cox-deBoor, \(0/0=0\))
 – If a knot value is repeated, it increases the effect (weight) of the blending function at that point
 – If knot is repeated \(d\) times, blending function converges to 1 and the curve interpolates the control point

B-splines: Cox-deBoor Recursion

• Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 – curves are weighted avgs of lower degree curves
• Let \(B_{i,d}(t)\) denote the \(i\)-th blending function for a B-spline of degree \(d\), then:

\[
B_{i,d}(t) = \begin{cases} 1, & \text{if } t_{i-1} \leq t < t_{i+1} \\ 0, & \text{otherwise} \end{cases}
\]

\[
B_{i,d}(t) = \begin{cases} \frac{t-t_{i-1}}{t_{i+1}-t_{i-1}} B_{i-1,d}(t) + \frac{t_{i+1}-t}{t_{i+1}-t_{i+1}} B_{i+1,d}(t) \\ 0, & \text{otherwise} \end{cases}
\]
Creating a Non-Uniform B-spline: Knot Selection

- Given curve of degree $d=3$, with $m+1$ control points p_0, \ldots, p_m
 - first, create $m+d$ knot values
 - use knot values $(0,0,1,2, \ldots, m-2, m-1,m-1,m-1)$
 (adding two extra 0’s and 1’s)
 - Note:
 - Causes Cox-deBoor to give added weight in blending to the first and last points when t is near t_{min} and t_{max}

B-splines: Multiple Knots

- Knot Vector $(0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0)$
- Several consecutive knots get the same value
- Changes the basis functions!

B-spline Summary

$$ p(t) = \sum_{i=0}^{d} B_{d,i}(t) p_i $$

Watching Effects of Knot Selection

- 9 knot points (initially)
 - Note: knots are distributed parametrically based on t, hence why they "move"
- 10 control points
- Curves have as many segments as they have non-zero intervals in u

B-splines: Local Control Property

- Local Control
 - polynomial coefficients depend on a few points
 - moving control point (P_d) affects only local curve
 - Why: Based on curve def'n, affected region extends at most 2 knot points away

B-splines: Local Control Property

- Knot
- Control point

Pic s / Math courtesy of G. Farin @ ASU

B-splines: Convex Hull Property

- The effect of multiple control points on a uniform B-spline curve

\[
\Sigma_{k=0}^{3} a_k u^k
\]

B-splines: Continuity

- Derivatives are easy for cubics
 \[
p(u) = \sum_{k=0}^{3} a_k u^k
\]
 \[
p'(u) = c_1 + 2c_2 u + 3c_3 u^2
\]

Easy to show \(C^0, C', C^2 \)

B-splines: Setting the Options

- How to space the knot points?
 - Uniform
 - equal spacing of knots along the curve
 - Non-Uniform
- Which type of parametric function?
 - Rational
 - \(x(t), y(t), z(t) \) defined as ratio of cubic polynomials
 - Non-Rational

NURBS

- At the core of several modern CAD systems
 - i-DEAS, Pro/E, Alpha_1
- Describes analytic and freeform shapes
- Accurate and efficient evaluation algorithms
- Invariant under affine and perspective transformations

Benefits of Rational Spline Curves

- Invariant under rotation, scale, translation, perspective transformations
 - transform just the control points, then regenerate the curve
 - (non-rationals only invariant under rotation, scale and translation)
- Can precisely define the conic sections and other analytic functions
 - conics require quadratic polynomials
 - conics only approximate with non-rationals

NURBS

- Non-uniform Rational B-splines: NURBS
 - Basic idea: four dimensional non-uniform B-splines, followed by normalization via homogeneous coordinates
 - If \(P_i = [x, y, z, 1] \), results are invariant wrt perspective projection
 - Also, recall in Cox-deBoor, knot spacing is arbitrary
 - knots are close together, influence of some control points increases
 - Duplicate knots can cause points to interpolate
 - e.g. Knots = \(\{0, 0, 0, 0, 1, 1, 1, 1\} \) create a Bezier curve
Rational Functions

- Cubic curve segments
 \[x(t) = \frac{X(t)}{W(t)}, \quad y(t) = \frac{Y(t)}{W(t)}, \quad z(t) = \frac{Z(t)}{W(t)} \]
 where \(X(t), Y(t), Z(t), W(t) \) are all cubic polynomials with control points specified in homogeneous coordinates, \([x,y,z,w]\)
- Note: for 2D case, \(z(t) = 0 \)

Rational Functions: Example

- Example:
 - rational function: a ratio of polynomials
 - a rational parameterization in \(u \) of a unit circle in xy-plane:
 \[x(u) = \frac{1-u^2}{1+u^2}, \quad y(u) = \frac{2u}{1+u^2}, \quad z(u) = 0 \]
 - a unit circle in 3D homogeneous coordinates:
 \[x[u] = 1-u^2, \quad y[u] = 2u, \quad z[u] = 0, \quad w[u] = 1 + u^2 \]

NURBS: Notation Alert

- Depending on the source/reference
 - Blending functions are either \(B_{i,j}(u) \) or \(N_{i,j}(u) \)
 - Parameter variable is either \(u \) or \(t \)
 - Curve is either \(C \) or \(P \) or \(Q \)
 - Control Points are either \(P_i \) or \(B_i \)
 - Variables for order, degree, number of control points etc are frustratingly inconsistent
 - \(k, i, j, m, n, p, L, d, \ldots \)

NURBS

- A \(d \)-th degree NURBS curve \(C \) is defined as:
 \[C(u) = \frac{\sum_{i=0}^{n} w_i B_{i,d}(u) P_i}{\sum_{i=0}^{n} w_i B_{i,d}(u)} \]
 Where
 - control points \(P_i \)
 - \(d \)-th degree B-spline blending function \(B_{i,d}(u) \)
 - the weight, \(w_i \) for control point \(P_i \)
 (when all \(w = 1 \), we have a B-spline curve)

Observe: Weights Induce New Rational Basis Functions, \(R \)

- Setting:
 \[R_i(u) = \frac{w_i B_{i,d}(u)}{\sum w_i B_{i,d}(u)} \]

 Allows us to write: \(C(u) = \sum R_{i,j}(u) P_i \)
 Where \(R_{i,j}(u) \) are rational basis functions
 - piecewise rational basis functions on \(\Xi \in \{0,1\} \)
 - weights are incorporated into the basis fcts
Geometric Interpretation of NURBS

- With Homogeneous coordinates, a rational \(n \)-D curve is represented by polynomial curve in \((n+1)\)-D.
- Homogeneous 3D control points are written as:
 \[P_i^w = w_i x_i, w_i y_i, w_i z_i, w_i \]
in 4D where \(w \neq 0 \)
- To get \(P_i \), divide by \(w_i \)
 - a perspective transform with center at the origin
- Note: weights can allow final curve shape to go outside the convex hull (i.e. negative \(w \)).

\[\begin{align*}
\text{NURBS: Examples} & \quad \text{Uniform Knot Vector} \\
\{0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0\} \\
\text{Several consecutive knots get the same value} \\
\text{Bunches up the curve and forces it to interpolate}
\end{align*} \]

\[\begin{align*}
\text{NURBS: Examples} & \quad \text{Non-Uniform Knot Vector} \\
\{0.0, 1.0, 2.0, 3.75, 4.0, 4.25, 6.0, 7.0\} \\
\text{Several consecutive knots get the same value} \\
\text{Bunches up the curve and forces it to interpolate} \\
\text{Can be done midcurve}
\end{align*} \]

The Effects of the Weights

- \(w_i \) of \(P_i \) effects only the range \([u, u_{i+k+1}]\)
- If \(w_i = 0 \) then \(P_i \) does not contribute to \(C \)
- If \(w_i \) increases, point \(B \) and curve \(C \) are pulled toward \(P_i \) and pushed away from \(P_j \)
- If \(w_i \) decreases, point \(B \) and curve \(C \) are pushed away from \(P_i \) and pulled toward \(P_j \)
- If \(w_i \) approaches infinity then \(B \) approaches 1 and \(B_i \to P_i \) if \(u \) in \([u, u_{i+k+1}]\)

\[\begin{align*}
\text{The Effects of the Weights} & \quad \text{Increased weight pulls the curve toward} \quad B_3 \\
\text{Increased weight pulls the curve toward} \quad B_3
\end{align*} \]
Programming Assignment 2

- Process command-line arguments
- Read in 3D input points and tangents
- Compute Bezier control points for curves defined by each two input points
- Modify tangents with tension parameter
- Use HW1 code to compute points on each Bezier curve
- Each Bezier curve should be a polyline
- Output points by printing them to the console as an IndexedLineSet with multiple polylines, and control points as spheres in Open Inventor format