CS 536
Computer Graphics

B-Splines and NURBS
Week 3, Lecture 5

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Outline

• More Types of Curves
 – Splines
 – B-splines
 – NURBS
• Knot sequences
• Effects of the weights
Splines

- Popularized in late 1960s in US Auto industry (GM)
 - R. Riesenfeld (1972)
 - W. Gordon

- Origin: the thin wood or metal strips used in building/ship construction

- Goal: define a curve as a set of piecewise simple polynomial functions connected together
Natural Splines

- Mathematical representation of physical splines
- C^2 continuous
- Interpolate all control points
- Have Global control (no local control)
B-splines: Basic Ideas

• Similar to Bézier curves
 – Smooth blending function times control points

• But:
 – Blending functions are non-zero over only a small part of the parameter range (giving us *local support*)
 – When nonzero, they are the “concatenation” of smooth polynomials. (They are piecewise!)
B-spline: Benefits

• User defines degree
 – Independent of the number of control points

• Produces a single piecewise curve of a particular degree
 – No need to stitch together separate curves at junction points

• Continuity comes for free!
B-splines

• Defined similarly to Bézier curves
 – p_i are the control points
 – Computed with basis functions (Basis-splines)
 • B-spline basis functions are blending functions
 – Each point on the curve is defined by the blending of the control points
 (B_i is the i-th B-spline blending function)

\[p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i \]

– No limits on the value of t!
– B_i is zero for most values of t!
B-splines: Cox-deBoor Recursion

• Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 – curves are weighted avgs of lower degree curves
• Let $B_{i,d}(t)$ denote the i-th blending function for a B-spline of degree d, then:

$$B_{k,0}(t) = \begin{cases}
1, & \text{if } t_k \leq t < t_{k+1} \\
0, & \text{otherwise}
\end{cases}$$

$$B_{k,d}(t) = \frac{t - t_k}{t_{k+d} - t_k} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t)$$
B-spline Blending Functions

$B_{k,0}(t)$ is a step function that is 1 in the interval

$B_{k,1}(t)$ spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)

$B_{k,2}(t)$ spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0

$B_{k,3}(t)$ is a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0
B-spline Blending Functions: Example for 2nd Degree Splines

- Note: can’t define a polynomial with these properties (both 0 and non-zero for ranges)
- Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function
B-spline Blending Functions: Example for 3rd Degree Splines

- Observe:
 - in $t=0$ to $t=1$ range just four of the functions are non-zero
 - all are ≥ 0 and sum to 1, hence the convex hull property holds for each curve segment of a B-spline

$$p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i$$
Transitions at Knots

- As one blending function goes to zero, another smoothly becomes non-zero
Example: Creating a B-spline Curve Segment

\[Q_i \]

\[t_i \quad t_{i+1} \]

\[P_i \]
B-splines: Knot Selection

- Instead of working with the parameter space $0 \leq t \leq 1$, use $t_{\text{min}} \leq t_0 \leq t_1 \leq t_2 \ldots \leq t_{m-1} \leq t_{\text{max}}$

- The **knot points**
 - joint points between curve segments, Q_i
 - Each has a **knot value**
 - $m-1$ knots for $m+1$ points

1994 Foley/VanDam/Finer/Huges/Phillips ICG
Uniform B-splines: Setting the Options

- Specified by
 - $m \geq 3$
 - $m+1$ control points, $P_0 \ldots P_m$
 - $m-2$ cubic polynomial curve segments, $Q_3 \ldots Q_m$
 - $m-1$ knot points, $t_3 \ldots t_{m+1}$
 - segments Q_i of the B-spline curve are
 - defined over a knot interval $[t_i, t_{i+1}]$
 - defined by 4 of the control points, $P_{i-3} \ldots P_i$
 - segments Q_i of the B-spline curve are blended together into smooth transitions via
 (the new & improved) blending functions
Example: Creating a B-spline

\[p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i \]

- \(m = 9 \)
- 10 control points
- 8 knot points
- 7 segments

![Diagram of B-spline with control points and knot points]
B-spline: Knot Sequences

- Even distribution of knots
 - *uniform* B-splines
 - Curve does not interpolate end points
 - first blending function not equal to 1 at $t=0$
- Uneven distribution of knots
 - *non-uniform* B-splines
 - Allows us to tie down the endpoints by repeating knot values
 (in Cox-deBoor, $0/0=0$!)
 - If a knot value is repeated, it increases the effect (weight) of the blending function at that point
 - If knot is repeated d times, blending function converges to 1 and the curve interpolates the control point
B-splines: Cox-deBoor Recursion

• Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 – curves are weighted avgs of lower degree curves

• Let $B_{i,d}(t)$ denote the i-th blending function for a B-spline of degree d, then:

$$B_{k,0}(t) = \begin{cases}
1, & \text{if } t_k \leq t < t_{k+1} \\
0, & \text{otherwise}
\end{cases}$$

$$B_{k,d}(t) = \frac{t-t_k}{t_{k+d} - t_k} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t)$$
Creating a Non-Uniform B-spline: Knot Selection

• Given curve of degree \(d=3 \), with \(m+1 \) control points \(p_0, \ldots, p_m \)
 - first, create \(m+d \) knot values
 - use knot values \((0,0,0,1,2,\ldots,m-2,m-1,m-1,m-1)\)
 (adding two extra 0’s and \(m-1 \)’s)
 - Note
 • Causes Cox-deBoor to give added weight in blending to the first and last points when \(t \) is near \(t_{\min} \) and \(t_{\max} \)
B-splines: Multiple Knots

- Knot Vector
 \{0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0\}
- Several consecutive knots get the same value
- Changes the basis functions!

\[p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i \]

B-spline Summary

\[B_{k,0}(t) = \begin{cases}
1, & \text{if } t_k \leq t < t_{k+1} \\
0, & \text{otherwise}
\end{cases} \]

\[B_{k,d}(t) = \frac{t - t_k}{t_{k+d} - t_k} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t) \]
Watching Effects of Knot Selection

- 9 knot points (initially)
 - Note: knots are distributed parametrically based on t, hence why they “move”
- 10 control points
- Curves have as many segments as they have non-zero intervals in u

Pics/Math courtesy of G. Farin @ ASU
B-splines: Local Control Property

- **Local Control**
 - polynomial coefficients depend on a few points
 - moving control point \((P_4)\) affects only local curve
 - Why: Based on curve def’ n, affected region extends at most 2 knot points away
B-splines: Local Control Property
B-splines: Convex Hull Property

• The effect of multiple control points on a uniform B-spline curve
B-splines: Continuity

- Derivatives are easy for cubics

\[p(u) = \sum_{k=0}^{3} u^k c_k \]

- Derivative:

\[p'(u) = c_1 + 2c_2 u + 3c_3 u^2 \]

Easy to show \(C^0, C^1, C^2 \)
B-splines: Setting the Options

• How to space the *knot points*?
 – **Uniform**
 • equal spacing of knots along the curve
 – **Non-Uniform**

• Which type of *parametric function*?
 – **Rational**
 • \(x(t), y(t), z(t)\) defined as ratio of cubic polynomials
 – **Non-Rational**
NURBS

- At the core of several modern CAD systems
 - I-DEAS, Pro/E, Alpha_1
- Describes analytic and freeform shapes
- Accurate and efficient evaluation algorithms
- Invariant under affine and perspective transformations
Benefits of Rational Spline Curves

• Invariant under rotation, scale, translation, perspective transformations
 – transform just the control points, then regenerate the curve
 – (non-rationals only invariant under rotation, scale and translation)

• Can precisely define the conic sections and other analytic functions
 – conics require quadratic polynomials
 – conics only approximate with non-rationals
NURBS

Non-uniform Rational B-splines: NURBS

• Basic idea: four dimensional non-uniform B-splines, followed by normalization via homogeneous coordinates
 – If \(P_i \) is \([x, y, z, 1]\), results are invariant wrt perspective projection
• Also, recall in Cox-deBoor, knot spacing is arbitrary
 – knots are close together, influence of some control points increases
 – Duplicate knots can cause points to interpolate
 – e.g. Knots = \(\{0, 0, 0, 0, 1, 1, 1, 1\} \) create a Bézier curve
Rational Functions

- Cubic curve segments

\[x(t) = \frac{X(t)}{W(t)} , \quad y(t) = \frac{Y(t)}{W(t)} , \quad z(t) = \frac{Z(t)}{W(t)} \]

where \(X(t) , Y(t) , Z(t) , W(t) \) are all cubic polynomials with control points specified in homogenous coordinates, \([x,y,z,w]\)

- Note: for 2D case, \(Z(t) = 0 \)
Rational Functions: Example

- **Example:**
 - rational function: a *ratio* of polynomials
 - a rational parameterization in u of a unit circle in xy-plane:

 $\begin{align}
 x(u) &= \frac{1 - u^2}{1 + u^2} \\
 y(u) &= \frac{2u}{1 + u^2} \\
 z(u) &= 0
 \end{align}$

 - a unit circle in 3D homogeneous coordinates:

 $\begin{align}
 x(u) &= 1 - u^2 \\
 y(u) &= 2u \\
 z(u) &= 0 \\
 w(u) &= 1 + u^2
 \end{align}$
NURBS: Notation Alert

• Depending on the source/reference
 – Blending functions are either $B_{i,d}(u)$ or $N_{i,d}(u)$
 – Parameter variable is either u or t
 – Curve is either C or P or Q
 – Control Points are either P_i or B_i
 – Variables for order, degree, number of control points etc are frustratingly inconsistent
 • $k, i, j, m, n, p, L, d, \ldots$
NURBS: Notation Alert

1. If defined using *homogenous coordinates*, the 4\(^{th}\) (3\(^{rd}\) for 2D) dimension of each \(P_i\) is the weight

2. If defined as *weighted euclidian*, a separate constant \(w_i\), is defined for each control point
A d-th degree NURBS curve C is defined as:

$$C(u) = \frac{\sum_{i=0}^{n-1} w_i B_{i,d}(u) P_i}{\sum_{i=0}^{n-1} w_i B_{i,d}(u)}$$

Where

- control points, P_i
- d-th degree B-spline blending functions, $B_{i,d}(u)$
- the weight, w_i, for control point P_i

(when all $w_i=1$, we have a B-spline curve)
Observe: Weights Induce New Rational Basis Functions, R

- Setting:
 \[
 R_i(u) = \frac{w_i B_{i,d}(u)}{\sum_{i=0}^{n-1} w_i B_{i,d}(u)}
 \]

Allows us to write:
\[
C(u) = \sum_{i=0}^{n-1} R_{i,d}(u) P_i
\]

Where $R_{i,d}(u)$ are rational basis functions
- piecewise rational basis functions on $u \in [0,1]$
- weights are incorporated into the basis fctns
Geometric Interpretation of NURBS

- With Homogeneous coordinates, a rational n-D curve is represented by polynomial curve in $(n+1)$-D.
- Homogeneous 3D control points are written as: $P^w_i = w_ix_i, w_iy_i, w_iz_i, w_i$ in 4D where $w \neq 0$.
- To get P_i, divide by w_i.
 - a perspective transform with center at the origin.
- Note: weights can allow final curve shape to go outside the convex hull (i.e. negative w).
NURBS: Examples

• Unif. Knot Vector

{0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}

• Non-Unif. Knot Vector

{0.0, 1.0, 2.0, 3.75, 4.0, 4.25, 6.0, 7.0}

NURBS: Examples

• Knot Vector
 \{0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0\}

• Several consecutive knots get the same value

• Bunches up the curve and forces it to interpolate

NURBS: Examples

- Knot Vector
 \{0.0, 1.0, 2.0, 3.0, 3.0, 5.0, 6.0, 7.0\}
- Several consecutive knots get the same value
- Bunches up the curve and forces it to interpolate
- Can be done midcurve

The Effects of the Weights

- w_i of P_i effects only the range $[u_i, u_{i+k+1})$
- If $w_i=0$ then P_i does not contribute to C
- If w_i increases, point B and curve C are *pulled toward* P_i and pushed away from P_j
- If w_i decreases, point B and curve C are *pushed away from* P_i and pulled toward P_j
- If w_i approaches infinity then B approaches 1 and $B_i \rightarrow P_i$, if u in $[u_i, u_{i+k+1})$
The Effects of the Weights

- Increased weight pulls the curve toward B_3
Programming Assignment 2

- Process command-line arguments
- Read in 3D input points and tangents
- Compute tangents at interior input points
- Modify tangents with tension parameter
- Compute Bezier control points for curves defined by each two input points
- Use HW1 code to compute points on each Bezier curve
- Each Bezier curve should be a polyline
- Output points by printing them to the console as an IndexedLineSet with multiple polylines, and control points as spheres in Open Inventor format