Outline

• Conic Sections via NURBS
• Knot insertion algorithm
• The de Boor’s algorithm
 – for B-Splines
 – for NURBS
• Oslo Algorithm
• Barycentric Coordinates
• Discussion of homework #3
Conic Sections via NURBS

- Obtained via projection of the 3D parabola onto a plane
- Note:
 - 3D Case: rational curve is a 4D object
 - 2D Case: rational curve is a 3D object
 - assign \(w \) to each control point

Conic Sections via NURBS

- Define the curve with three control points
- Weights of first/last control points are 1
- For center control point
 - \(w < 1 \) gives an ellipse
 - \(w > 1 \) gives a hyperbola
 - \(w = 1 \) gives a parabola
 - Knot vector is \{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}

Conic Sections via NURBS: A Circular Arc

- The two sides of the control polygon are of equal length.
- The chord connecting the first and last control points meets each leg at an angle θ equal to half the angular extent of the desired arc (for instance, 30° for a 60° arc).
- The weight of the inner control point is equal to the cosine of θ.
- Knot vector is $\{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}$.

Conic Sections via NURBS: A Circle

• What if we need an arc of >180°?

• Idea:
 – Use multiple 90° or 120° arcs
 – Stitch them together with knots

Example:
 3 arcs of 120°

Conic Sections via NURBS

Example:
4 arcs of 90°

\[
\begin{align*}
B_3 &= \left\{-1, 1, \frac{\sqrt{2}}{2}\right\} \\
B_4 &= \{-1, 0, 1\} \\
B_5 &= \{-1, -1, \frac{\sqrt{2}}{2}\} \\
B_6 &= \{0, -1, 1\} \\
B_7 &= \{1, -1, \frac{\sqrt{2}}{2}\} \\
B_2 &= \{0, 1, 1\} \\
B_1 &= \left\{1, 1, \frac{\sqrt{2}}{2}\right\} \\
B_0 &= B_8 = \{1, 0, 1\}
\end{align*}
\]

knots = \[0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1, 1, 1\]

Knot Insertion

• Issue: More control points mean more control
• How do we add more points and keep same curve?

Knot Insertion

• Basic Approach
 – Decide where we’d like to tweak the curve
 – Add a new knot
 – Find affected $d-1$ control points
 – Replace it with d new control points

Example:
New knot at $u=2.6$

Knot Insertion

• Given: \(n+1 \) control points \((P_0, P_1, ..., P_n)\), a knot vector of \(m+1 \) knots \(U = \{ u_0, u1, ..., u_m \} \) and a degree \(d \) B-spline curve \(C(u) \).

• Insert a new knot \(t \) into the knot vector without changing the shape of the curve.

• If \(t \) lies in knot span \([u_k, u_{k+1}]\), only the basis functions for \((P_k, ..., P_{k-d})\) are non-zero.

• Find \(d \) new control points \(Q_k \) on edge \(P_{k-1}P_k \), \(Q_{k-1} \) on edge \(P_{k-2}P_{k-1} \), ..., and \(Q_{k-d+1} \) on edge \(P_{k-d}P_{k-d+1} \).

• All other control points are unchanged.

• Note that \(d-1 \) control points of the original control polyline are removed and replaced with \(d \) new control points.

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Knot Insertion Algorithm

• Create new control point

\[Q_j = (1 - \alpha_j)P_{j-1} + \alpha_jP_j \]

• Where \(\alpha \) is defined as

\[\alpha_j = \frac{t - u_j}{u_{j+d} - u_j} \]

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Properties of Knot Insertion

- Increasing the multiplicity of a knot decreases the number of non-zero basis functions at this knot.
- At a knot of multiplicity d, there will be only one non-zero basis function.
- Corresponding point on the curve $p(u)$ is affected by exactly one control point p_i.
- In fact $p(u)$ is p_i!
The de Boor Algorithm

• Generalization of de Casteljau's algorithm

• It provides a fast and numerically stable way for finding a point on a B-spline curve

• Observation: if a knot \(u \) is inserted \(d \) times to a B-spline, then \(p(u) \) is the point on the curve.

• Idea: We just simply insert \(u \) \(d \) times and the last point is \(p(u) \)!

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/de-Boor.html
The de Boor Algorithm
De Boor’s Algorithm

If \(u \) lies in \([u_k, u_{k+1})\) and \(u \neq u_k \), let \(h = d \)

If \(u = u_k \) and \(u_k \) is a knot of multiplicity \(s \), let \(h = d - s \)

Copy the affected control points \(p_{k-s}, p_{k-s-1}, \ldots, p_{k-d+1}, p_{k-d} \)

\[\text{for } r := 1 \text{ to } h \text{ do} \]
\[\text{for } i := k-d+r \text{ to } k-s \text{ do} \]
\[\{ \]
\[\text{Let } a_{i,r} = \frac{(u - u_i)}{(u_{i+d-r+1} - u_i)} \]
\[\text{Let } p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i,r-1} \]
\[\} \]

\(p_{k-s,d-s} \) is the point \(p(u) \).

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
De Boor’s Algorithm (cont)

for \(u := 0 \) to \(u_{\text{max}} \) do
{
 ...
 for \(r := 1 \) to \(h \) do
 for \(i := k-p+r \) to \(k-s \) do
 \{
 Let \(a_{i,r} = (u - u_i) / (u_{i+p-r+1} - u_i) \)
 Let \(p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i,r-1} \)
 \}
 \(p_{k-s,p-s} \) is the point \(p(u) \).
 \}

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
Example of de Boor’s Algorithm

Degree 3 B-spline curve (i.e., $d = 3$)
Defined by seven control points p_0, \ldots, p_6
And knot vector:

\[
\begin{array}{cccccc}
& u_0 = u_1 = u_2 = u_3 & u_4 & u_5 & u_6 & u_7 = u_8 = u_9 = u_{10} \\
0 & 0.25 & 0.5 & 0.75 & 1 \\
\end{array}
\]

$u = 0.4$

$a_{4,1} = \frac{(u - u_4)}{(u_4 + 3 - u_4)} = 0.2$
$a_{3,1} = \frac{(u - u_3)}{(u_3 + 3 - u_3)} = \frac{8}{15} = 0.53$
$a_{2,1} = \frac{(u - u_2)}{(u_2 + 3 - u_2)} = 0.8$
$p_{4,1} = (1 - a_{4,1})p_{3,0} + a_{4,1}p_{4,0} = 0.8p_{3,0} + 0.2p_{4,0}$
$p_{3,1} = (1 - a_{3,1})p_{2,0} + a_{3,1}p_{3,0} = 0.47p_{2,0} + 0.53p_{3,0}$
$p_{2,1} = (1 - a_{2,1})p_{1,0} + a_{2,1}p_{2,0} = 0.2p_{1,0} + 0.8p_{2,0}$

$a_{4,2} = \frac{(u - u_4)}{(u_4 + 3 - u_4)} = 0.3$
$a_{3,2} = \frac{(u - u_3)}{(u_3 + 3 - u_3)} = 0.8$
$p_{4,2} = (1 - a_{4,2})p_{3,1} + a_{4,2}p_{4,1} = 0.7p_{3,1} + 0.3p_{4,1}$
$p_{3,2} = (1 - a_{3,2})p_{2,1} + a_{3,2}p_{3,1} = 0.2p_{2,1} + 0.8p_{3,1}$

$a_{4,3} = \frac{(u - u_4)}{(u_4 + 3 - u_4)} = 0.6$
$p_{4,3} = (1 - a_{4,3})p_{3,2} + a_{4,3}p_{4,2} = 0.4p_{3,2} + 0.6p_{4,2}$

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
Similar but Different

De Casteljau's:
- Dividing points are computed with a pair of numbers \((1 - u)\) and \(u\) that never change
- Can be used for curve subdivision
- Uses *all* control points

De Boor's
- These pairs of numbers are different and depend on the column number and control point number
- Intermediate control points are not sufficient
- \(d-1\) affected control points are involved in the computation
De Boor’s: Curves
Oslo Algorithm

• A subdivision algorithm for B-splines, the basic idea:
• Take the curve with $m+1$ control points P_0 to P_m
• Insert a knot in any point (0.5 maybe?)
• As a result you will have 2 new points P_k' and P_k''
• Take curves with $m+1$ control points $P_0 ... P_k', P_k'' ... P_{m-1}$ and $P_{l} ... P_k', P_k'' ... P_m$
• Apply procedure recursively on each part
Barycentric Coordinates

• By Ceva's Theorem:
 – For any point K inside the triangle ABC
 – Consider the existence of masses w_A, w_B, and w_C, placed at the vertices of the triangle
 – Their center of gravity (barycenter) will coincide with the point K.

• August Ferdinand Moebius (1790-1868) defined (1827) w_A, w_B, and w_C as the barycentric coordinates of K
• $K = w_A A + w_B B + w_C C$

http://www.cut-the-knot.org/triangle/barycenter.shtml
Properties of Barycentric Coordinates

- Not unique
- Can be generalized to negative masses
- Can be made unique by setting
 \[w_A + w_B + w_C = 1 \]
- \(w_A = 0 \) for points on BC
- \(w_B = 0 \) for points on AC
- \(w_C = 0 \) on AB

http://www.cut-the-knot.org/triangle/barycenter.shtml
Given P, how can we compute α, β, γ?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area
 \[\alpha = \frac{A_a}{A}, \quad \beta = \frac{A_b}{A}, \quad \gamma = \frac{A_c}{A} \]

Use signed areas for points outside the triangle

Area Ta:
\[\frac{|(b-P) \times (c-P)|}{2} \]
Calculating the Weights

• Given vertices A, B, C and Centroid K
• What are the weights, \(w_A, w_B, w_C \)?

\[
x_K = w_Ax_A + w_Bx_B + w_Cx_C
\]

\[
y_K = w_Ay_A + w_By_B + w_Cy_C
\]

• Substitute \(w_C = 1 - w_A - w_B \)

\[
x_K = w_Ax_A + w_Bx_B + (1 - w_A - w_B)x_C
\]

\[
y_K = w_Ay_A + w_By_B + (1 - w_A - w_B)y_C
\]
Calculating Weights (cont.)

• Solve for w_A and w_B

\[
\begin{align*}
w_A &= \frac{(x_B - x_C)(y_C - y_K) - (x_C - x_K)(y_B - y_C)}{(x_A - x_C)(y_B - y_C) - (x_B - x_C)(y_A - y_C)} \\
w_B &= \frac{(x_A - x_C)(y_C - y_K) - (x_C - x_K)(y_A - y_C)}{(x_B - x_C)(y_A - y_C) - (x_A - x_C)(y_B - y_C)}
\end{align*}
\]

• $w_C = 1 - w_A - w_B$
Programming Assignment 2

- Process command-line arguments
- Read in 3D curve points and tangents
- Compute Bezier control points for curves defined by each two curve points
- Use HW1 code to compute points on each Bezier curve
- Each Bezier curve should be a polyline
- Output points by printing them to the console as an IndexedLineSet with multiple polylines, and control points as spheres in Open Inventor format