Overview

• Cohen-Sutherland Line Clipping
• Parametric Line Clipping
Motivation
Motivation
Motivation

• Only draw lines inside window
• Clip lines to window boundary
Scissoring Clipping

Performed during scan conversion of the line (circle, polygon)

Compute the next point \((x,y)\)

If \(x_{\text{min}} \leq x \leq x_{\text{max}}\) and \(y_{\text{min}} \leq y \leq y_{\text{max}}\)

Then output the point.

Else do nothing

- **Issues with scissoring:**
 - Too slow
 - Does more work then necessary

- **Better to clip lines to window, than “draw” lines that are outside of window**
The Cohen-Sutherland Line Clipping Algorithm

• How to clip lines to fit in windows?
 – easy to tell if whole line falls w/in window
 – harder to tell what part falls inside

• Consider a straight line
 $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$

• And window: WT, WB, WL and WR
Basic Idea:

• **First**, do easy test
 – *completely* inside or outside the box?
• **If no**, we need a more complex test
• Note: we will also need to figure out how line intersects the box
Cohen-Sutherland

Perform trivial accept and reject

• Assign each end point a location code
• Perform bitwise logical operations on a line’s location codes
• Accept or reject based on result
• Frequently provides no information
 – Then perform more complex line intersection
Cohen-Sutherland

The Easy Test:
Compute 4-bit code based on endpoints P_1 and P_2

<table>
<thead>
<tr>
<th>1001</th>
<th>1000</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
</tr>
</tbody>
</table>

Bit 1: 1 if point is above window, i.e. $y > WT$.
Bit 2: 1 if point is below window, i.e. $y < WB$.
Bit 3: 1 if point is right of window, i.e. $x > WR$.
Bit 4: 1 if point is left of window, i.e. $x < WL$.

Pics/Math courtesy of Dave Mount @ UMD-CP
Cohen-Sutherland

- Line is completely visible iff both code values of endpoints are 0, i.e. \(C_0 \lor C_1 = 0 \)
- If line segments are completely outside the window, then \(C_0 \land C_1 \neq 0 \)

<table>
<thead>
<tr>
<th>1001</th>
<th>1000</th>
<th>1010</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
<td>WB</td>
</tr>
</tbody>
</table>

Clip rectangle

Pics/Math courtesy of Dave Mount @ UMD-CP
Otherwise, we clip the lines:

- We know that there is a bit flip, w.o.l.g. assume its \((x_0, x_1)\)
- Which bit? Try `em all!
 - suppose it’s bit 4
 - Then \(x_0 < WL\) and we know that \(x_1 \geq WL\)
 - We need to find the point: \((x_c, y_c)\)
Cohen-Sutherland

- Clearly: \(x_c = WL \)
- Using *similar* triangles
 \[
 \frac{y_c - y_0}{y_1 - y_0} = \frac{WL - x_0}{x_1 - x_0}
 \]
- Solving for \(y_c \) gives
 \[
 y_c = \frac{WL - x_0}{x_1 - x_0} (y_1 - y_0) + y_0
 \]
Cohen-Sutherland

- Replace (x_0, y_0) with (x_c, y_c)
- Re-compute codes
- Continue until all bit flips (clip lines) are processed, i.e. all points are inside the clip window

Pics/Math courtesy of Dave Mount @ UMD-CP
Cohen Sutherland
Cohen-Sutherland
Cohen Sutherland

0001 0010

0001 0000 0010

0101 0100 0110

Window

WT WB WL WR
Cohen Sutherland
Parametric Line Equation

- Line: \(P(t) = P_0 + t(P_1 - P_0) \)
 \[= (1 - t)P_0 + tP_1 \]

- \(t \) value defines a point on the line going through \(P_0 \) and \(P_1 \)

- \(0 \leq t \leq 1 \) defines line segment between \(P_0 \) and \(P_1 \)

- \(P(0) = P_0 \quad P(1) = P_1 \)
Intersecting Two Edges (1)

- Edge 0: \((P_0, P_1)\)
- Edge 2: \((P_2, P_3)\)
- \(E_0 = P_0 + t_0*(P_1-P_0)\), \(D_0 = (P_1-P_0)\)
- \(E_2 = P_2 + t_2*(P_3-P_2)\), \(D_2 = (P_3-P_2)\)
- \(P_0 + t_0*D_0 = P_2 + t_2*D_2\)
- \(x_0 + dx_0 * t_0 = x_2 + dx_2 * t_2\)
- \(y_0 + dy_0 * t_0 = y_2 + dy_2 * t_2\)
Intersecting Two Edges (2)

• Solve for t’s
 • \(t_0 = \frac{((x_0 - x_2) * dy_2 + (y_2 - y_0) * dx_2)}{(dy_0 * dx_2 - dx_0 * dy_2)} \)
 • \(t_2 = \frac{((x_2 - x_0) * dy_0 + (y_0 - y_2) * dx_0)}{(dy_2 * dx_0 - dx_2 * dy_0)} \)

• See http://www.vb-helper.com/howto_intersect_lines.html for derivation

• Edges intersect if \(0 \leq t_0, t_2 \leq 1 \)

• Edges are parallel if denominator = 0
Parametric Line Clipping

- Developed by Cyrus and Beck in 1978
- Used to clip 2D/3D lines against convex polygon/polyhedron
- Liang and Barsky (1984) algorithm efficient in clipping upright 2D/3D clipping regions
- Cyrus-Beck may be reduced to more efficient Liang-Barsky case
- Based on parametric form of a line
 - Line: \(P(t) = P_0 + t(P_1 - P_0) \)
The Cyrus-Beck Technique

• Cohen-Sutherland algorithm computes \((x,y)\) intersections of the line and clipping edge
• Cyrus-Beck finds a value of parameter \(t\) for intersections of the line and clipping edges
• Simple comparisons used to find actual intersection points
• Liang-Barsky optimizes it by examining \(t\) values as they are generated to reject some line segments immediately
Finding the Intersection Points

Line $P(t) = P_0 + t(P_1 - P_0)$

Point on the edge P_{ei}

$N_i \rightarrow$ Normal to edge i

$$N_i \cdot [P(t)-P_{Ei}] = 0$$

$$N_i \cdot [P_0 + t(P_1-P_0)-P_{Ei}] = 0$$

$$N_i \cdot [P_0-P_{Ei}] + N_i \cdot t[P_1-P_0] = 0$$

Let $D = (P_1-P_0)$

$$t = \frac{N_i \cdot [P_0-P_{Ei}]}{N_i \cdot D}$$

Make sure

1. $D \neq 0$, or $P_1 \neq P_0$
2. $N_i \cdot D \neq 0$, lines are not parallel
Calculating N_i

N_i for window edges
- WT: (0,1) WB: (0, -1) WL: (-1,0) WR: (1,0)

N_i for arbitrary edges
- Calculate edge direction
 - $E = (V_1 - V_0) / |V_1 - V_0|$
 - Be sure to process edges in CCW order
- Rotate direction vector -90°
 - $N_x = E_y$
 - $N_y = -E_x$
Finding the Line Segment

- Calculate intersection points between line and every window line
- Classify points as potentially entering (PE) or leaving (PL)
- PE if crosses edge into inside half plane => angle $P_0 P_1$ and N_i greater than 90° => $N_i \cdot D < 0$
- PL otherwise.
- Find $T_e = \max(t_e)$
- Find $T_l = \min(t_l)$
- Discard if $T_e > T_l$
- If $T_e < 0$, $T_e = 0$
- If $T_l > 1$, $T_l = 1$
- Use T_e, T_l to compute intersection coordinates (x_e, y_e), (x_l, y_l)

1994 Foley/VanDam/Finer/Huges/Phillips ICG