3D Modeling

• 3D Representations
 – Wireframe models
 – Surface Models
 – Solid Models
 – Meshes and Polygon soups
 – Voxel/Volume models
 – Decomposition-based
 • Octrees, voxels
• Modeling in 3D
 – Constructive Solid Geometry (CSG), Brep and feature-based

Representing 3D Objects

• Exact
 – Wireframe
 – Parametric Surface
 – Solid Model
 • CSG
 • BRP
 • Implicit Solid Modeling

• Approximate
 – Facet / Mesh
 • Just surfaces
 – Voxel
 • Volume info

Negatives when Representing 3D Objects

• Exact
 – Complex data structures
 – Expensive algorithms
 – Wide variety of formats, each with subtle nuances
 – Hard to acquire data
 – Translation required for rendering

• Approximate
 – Lossy
 – Data structure sizes can get HUGE, if you want good fidelity
 – Easy to break (i.e. cracks can appear)
 – Not good for certain applications
 • Lots of interpolation and guess work
Positives when Representing 3D Objects

- **Exact**
 - Precision
 - Simulation, modeling, etc.
 - Lots of modeling environments
 - Physical properties
 - Fine-level control
 - Many applications (tool path generation, motion, etc.)
 - Compact

- **Approximate**
 - Easy to implement
 - Easy to acquire
 - 3D scanner, CT
 - Easy to render
 - Direct mapping to the graphics pipeline
 - Lots of algorithms

Exact Representations

- Wireframe
- Parametric Surface
- Solid Model
 - operations
 - CSG, BRep, implicit geometry

Wireframes

- Basic idea:
 - Represent the model as the set of all of its edges
- Example:
 - A simple cube
 - 12 lines
 - 8 vertices
- How about the faces?

Issues with Wireframes

- Visually ambiguous
- No surfaces!
 - What’s inside? What’s outside?
 - Hidden line removal?
- What does validity entail?
 - Don’t we just have a bunch of wires?
 - Do they need to add up to something?
- How to model wireframe shapes?
 - Wire by wire? Not very easy!

Surface Models

- Basic idea:
 - Represent a model as a set of faces/patches
- Limitations:
 - Topological integrity; how do faces “line up”?; which way is ‘inside’ / ‘outside’?
- Used in many CAD applications
 - Why? They are fine for drafting and rendering, not as good for creating true physical models

3D Mesh File Formats

Some common formats

- STL
- SMF
- OpenInventor
- VRML
- X3D
Minimal

• Vertex + Face
• No colors, normals, or texture
• Primarily used to demonstrate geometry algorithms

Full-Featured

• Colors / Transparency
• Vertex-Face Normals (optional can be computed)
• Scene Graph
• Lights
• Textures
• Views and Navigation

Simple Mesh Format (SMF)

• Michael Garland
 http://graphics.cs.uiuc.edu/~garland/
• Triangle data
• Vertex indices begin at 1

Stereolithography (STL)

• Triangle data + Face Normal
• The de-facto standard for rapid prototyping

Open Inventor

• Developed by SGI
• Predecessor to VRML
 – Scene Graph

Virtual Reality Modeling Language (VRML)

• SGML Based
• Scene-Graph
• Full Featured

#VRML V2.0 utf8
A Cylinder
Shape { appearance Appearance { material Material () } geometry Cylinder { height 2.0 radius 1.5 } }
X3D

- Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
- Supports
 - 2D/3D graphics, programmable shaders
 - 2D/3D compositing, CAD data, Animation
 - Spatialized audio and video, User interaction
 - Navigation, Scripting, Networking, Simulation
- See www.web3d.org for more info

Issues with 3D “mesh” formats

- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc

BRep Data Structures

- Winged-Edge Data Structure (Weiler)
- Vertex
 - n edges
- Edge
 - 2 vertices
 - 2 faces
- Face
 - m edges

BRep Data Structure

- Vertex structure
 - X,Y,Z point
 - Pointers to n coincident edges
- Face structure
 - Pointers to m edges
- Edge structure
 - 2 pointers to end-point vertices
 - 2 pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge

Biparametric Surfaces

- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions

Biparametric Patch

- (u,v) pair maps to a 3D point on patch
- \(F(u,v) = (x,y,z) = (x(u,v), y(u,v), z(u,v)) \)
Bicubic Surfaces

- Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \([s^3 s^2 s 1] \)
- For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:
 \[
 Q(s,t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S
 \]

Observations About Bicubic Surfaces

- For a fixed \(t_1, Q(s,t_1) \) is a curve
- Gradually incrementing \(t_1 \) to \(t_2 \), we get a new curve
- The combination of these curves is a surface
- \(G_i(t) \) are 3D curves

Bicubic Surfaces

- Each \(G_i(t) \) is \(G_i(t) = G_i \cdot M \cdot T \), where
 \[
 G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}
 \]
- Transposing \(G_i(t) \), we get
 \[
 G_i(t) = T^T \cdot M^T \cdot G_i^T
 \]
 \[
 = T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T
 \]

Bicubic Surfaces

- Substituting \(G_i(t) \) into \(Q(s) = G \cdot M \cdot S \), we get \(Q(s,t) \)
- The \(g_{i1}, \) etc. are the control points for the Bicubic surface patch:
 \[
 Q(s,t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S
 \]

Bicubic Surfaces

- Writing out \(Q(s,t) = T^T \cdot M^T \cdot G \cdot M \cdot S \) \(0 \leq s,t \leq 1 \) gives
 \[
 x(s,t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S
 \]
 \[
 y(s,t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S
 \]
 \[
 z(s,t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S
 \]

Bicubic Bézier Patch

- Bézier Surfaces (similar definition)
 \[
 x(s,t) = T^T \cdot M^T_B \cdot G_{B_x} \cdot M_B \cdot S
 \]
 \[
 y(s,t) = T^T \cdot M^T_B \cdot G_{B_y} \cdot M_B \cdot S
 \]
 \[
 z(s,t) = T^T \cdot M^T_B \cdot G_{B_z} \cdot M_B \cdot S
 \]
Bicubic Bézier Patches

- Expanding the summation

\[\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = \sum_{i=0}^{3} \sum_{j=0}^{3} (u^i)(v^j)\tilde{p}_{ij} = \sum_{i=0}^{3} b_i(u)\sum_{j=0}^{3} b_j(v)\tilde{p}_{ij} \]

\[\begin{align*}
&b_0(u)b_0(v)\tilde{p}_{00} + \\
&b_0(u)b_1(v)\tilde{p}_{01} + \\
&b_0(u)b_2(v)\tilde{p}_{02} + \\
&b_0(u)b_3(v)\tilde{p}_{03} + \\
&b_1(u)b_0(v)\tilde{p}_{10} + \\
&b_1(u)b_1(v)\tilde{p}_{11} + \\
&b_1(u)b_2(v)\tilde{p}_{12} + \\
&b_1(u)b_3(v)\tilde{p}_{13} \\
&b_2(u)b_0(v)\tilde{p}_{20} + \\
&b_2(u)b_1(v)\tilde{p}_{21} + \\
&b_2(u)b_2(v)\tilde{p}_{22} + \\
&b_2(u)b_3(v)\tilde{p}_{23} + \\
&b_3(u)b_0(v)\tilde{p}_{30} + \\
&b_3(u)b_1(v)\tilde{p}_{31} + \\
&b_3(u)b_2(v)\tilde{p}_{32} + \\
&b_3(u)b_3(v)\tilde{p}_{33} \\
\end{align*} \]

for \(0 \leq u, v \leq 1 \)

Cubic Bezier Blending Functions

\[b(u) = \begin{cases}
(1-u)^3 & \text{if } 0 \leq u \leq 1 \\
3u(1-u)^2 & \text{if } 0 \leq u \leq 1 \\
3u^2(1-u) & \text{if } 0 \leq u \leq 1 \\
u^3 & \text{if } 0 \leq u \leq 1
\end{cases} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs

Plotting Isolines

Faceting Animation
Faceting

Defining the Triangles

```c
// This assumes that the vertices are in a 2D array, verts(i,j)
for i = 0 to (num_u – 2)
  for j = 0 to (num_v - 2)
    triangle0 = (verts[i,j], verts[i+1,j], verts[i+1,j+1])
    triangle1 = (verts[i,j], verts[i+1,j+1], verts[i,j+1])
```

Faceting Overview

- Double loop that increments through the u and v parameters
 - Values between 0 and 1
- For each (u,v) pair calculate 3D point on patch
- This produces a 2-D array of 3D points on the patch
- Define triangles that tessellate the patch

Composite Bézier Surfaces

- C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- G^1 continuity achieved when cross-wise CPs are co-linear

Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with G^1 continuity

Bezier Surface: Example

- Increased facet resolution
- Rendered
B-spline Surfaces

\[
x(s,t) = T^T \cdot M_{B_s} \cdot G_{B_s} \cdot M_{B_t} \cdot S \\
y(s,t) = T^T \cdot M_{B_s}^T \cdot G_{B_s} \cdot M_{B_t} \cdot S \\
z(s,t) = T^T \cdot M_{B_s}^T \cdot G_{B_s} \cdot M_{B_t} \cdot S
\]

- Representation for B-spline patches
- \(C^2\) continuity across boundaries is automatic with B-splines

Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining

Computing the Normals to Surfaces

- For a bicubic surface, first, compute the \(s\) tangent vector

\[
\frac{\delta}{\delta s} Q(s,t) \\
= \frac{\delta}{\delta s} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \\
= T^T \cdot M^T \cdot G \cdot M \cdot \frac{\delta}{\delta s} (S) \\
= T^T \cdot M^T \cdot G \cdot M \cdot \begin{bmatrix} 3s^2 & 2s & 1 & 0 \end{bmatrix}
\]

Computing the Normals to Surfaces

- Next, compute the \(t\) tangent vector:

\[
\frac{\delta}{\delta t} Q(s,t) \\
= \frac{\delta}{\delta t} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \\
= \frac{\delta}{\delta t} (T^T) \cdot M^T \cdot G \cdot M \cdot S \\
= \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}^T \cdot M^T \cdot G \cdot M \cdot S
\]

Computing the Normals to Surfaces

- Since \(s\) and \(t\) are tangent to the surface, their cross product is the normal vector to the surface

\[
\frac{\delta}{\delta s} Q(s,t) \times \frac{\delta}{\delta t} Q(s,t) = \left[y_s z_t - z_s y_t, x_s z_t - z_s x_t, x_s y_t - y_s x_t \right]
\]

- \(x_s\) - \(x\) component of \(s\) tangent
- \(y_s\) - \(y\) component of \(s\) tangent
- \(z_s\) - \(z\) component of \(s\) tangent

Drawing Parametric Surfaces

- Usually done “patch by patch”
- Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh
Direct Rendering

- Use a scan-line algorithm
 - Evaluate pixel by pixel
 - Problem: How to go from \((x, y)\) “screen space” to point on the 3D patch
 - Easy for a planar polygon where we know \(\max/\min y\), equations for edges, screen depth
 - Not as easy for parametric surfaces

Issues for Direct Rendering

- Max/Min y coords may not lie on boundaries
- Silhouette edges result from patch bulges
 - Need to track both silhouettes and boundaries
 - What if they intersect?
 - Note: patch edges need not be monotonic in \(x\) or \(y\)
- Idea: Scan convert patch \(plane-by-plane\), using scan planes instead of scan lines

Direct Scan Conversion of Patches

- Basic idea
 - Find intersection of patch with \(XZ\) plane
 - Producing a planar curve
 - Draw the curve
 - De Boor, D’Casteljeau
 - Note: if doing rendering, one can compute pixel-by-pixel color values this way
 - Patch: \(x=X(u,v), y=Y(u,v), z=Z(u,v)\)

Patch to Polygon Conversion

Two methods:

- **Object Space Conversion**
 - Techniques
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space
- **Image Space Conversion**
 - Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure

- Cut parameter space into equal parts
- Find new points on the surface
- Recurse/Repeat “until done”
- Split squares into triangles
- Render

Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes
Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel

Silhouette Determination

\[\text{N} \parallel \text{L} = 0 \]

- Where \(\text{N} \) is the normal at the point where \(\text{L} \), the line of sight, hits the surface

Programming Assignment 3

- Process command line arguments
- Read in control points from file
- Double loop through \(u \) & \(v \) parameters
- For each \((u, v)\) pair compute 3D point on Bezier patch
- Once you’ve computed the 3D points, define the triangles that connect them
- If shading, compute exact normals at each mesh vertex
- Output all data as Open Inventor

How do I know if I’ve found a silhouette edge?

- If the viewing ray is tangent to the surface at the point it hits the surface!
 \[\text{N}(x) \parallel \text{L} = 0 \]
- Where \(\text{N} \) is the normal at the point where \(\text{L} \), the line of sight, hits the surface