Overview

- 3D model representations
- Mesh formats
- Bicubic surfaces
- Bezier surfaces
- Normals to surfaces
- Direct surface rendering

3D Modeling

- 3D Representations
 - Wireframe models
 - Surface Models
 - Solid Models
 - Meshes and Polygon soups
 - Voxel/Volume models
 - Decomposition-based
 - Octrees, voxels
- Modeling in 3D
 - Constructive Solid Geometry (CSG), Breps and feature-based

Representing 3D Objects

- Exact
 - Wireframe
 - Parametric Surface
 - Solid Model
 - CSG
 - BRep
 - Implicit Solid Modeling
- Approximate
 - Facet / Mesh
 - Just surfaces
 - Voxel
 - Volume info

Representing 3D Objects

- Exact
 - Precise model of object topology
 - Mathematically represent all geometry
- Approximate
 - A discretization of the 3D object
 - Use simple primitives to model topology and geometry

Positives when Representing 3D Objects

- Exact
 - Precision
 - Simulation, modeling, etc.
 - Lots of modeling environments
 - Physical properties
 - High-level control
 - Many applications (tool path generation, motion, etc.)
 - Compact
- Approximate
 - Easy to implement
 - Easy to acquire
 - 3D scanner, CT
 - Easy to render
 - Direct mapping to the graphics pipeline
 - Lots of algorithms
Negatives when Representing 3D Objects

- **Exact**
 - Complex data structures
 - Expensive algorithms
 - Wide variety of formats, each with subtle nuances
 - Hard to acquire data
 - Translation required for rendering

- **Approximate**
 - Lossy
 - Data structure sizes can get HUGE, if you want good fidelity
 - Easy to break (i.e. cracks can appear)
 - Not good for certain applications
 - Lots of interpolation and guess work

Exact Representations

- Wireframe
- Parametric Surface
- Solid Model
 - operations
 - CSG, BRep, implicit geometry

Wireframes

- Basic idea:
 - Represent the model as the set of all of its edges
- Example:
 - A simple cube
 - 12 lines
 - 8 vertices

- How about the faces?

Issues with Wireframes

- Visually ambiguous
- No surfaces!
 - What’s inside? What’s outside?
 - Hidden line removal?
- What does validity entail?
 - Don’t we just have a bunch of wires?
 - Do they need to add up to something?
- How to model wireframe shapes?
 - Wire by wire? Not very easy!

Surface Models

- Basic idea:
 - Represent a model as a set of faces/patches
- Limitations:
 - Topological integrity; how do faces “line up”?; which way is ‘inside’ / ‘outside’?
- Used in many CAD applications
 - Why? They are fine for drafting and rendering, not as good for creating true physical models

3D Mesh File Formats

Some common formats

- STL
- SMF
- OpenInventor
- VRML
- X3D
Minimal

- Vertex + Face
- No colors, normals, or texture
- Primarily used to demonstrate geometry algorithms

Full-Featured

- Colors / Transparency
- Vertex-Face Normals (optional, can be computed)
- Scene Graph
- Lights
- Textures
- Views and Navigation

Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

```
#SMF 1.0
#vertices 5
#faces 6
v 2.6 0.0 2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 3 1 2
f 2 4 1
f 1 3 4
f 4 3 5
```

Stereolithography (STL)

- Triangle data + Face Normal
- The de-facto standard for rapid prototyping

```
solid
...
facet normal 0.00 0.00 1.00
outer loop
vertex 1.00 0.00 0.00
vertex -1.00 1.00 0.00
vertex 0.00 -1.00 0.00
endloop
endfacet
...
endsolid
```

Open Inventor

- Developed by SGI
- Predecessor to VRML
 - Scene Graph

Virtual Reality Modeling Language (VRML)

- SGML Based
- Scene-Graph
- Full Featured

```
#VRML V2.0 utf8
World { cylinder { appearance Appearance { material Material [] } geometry Cylinder { height 2.0 radius 1.5 } }
```
X3D
• Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
• Supports
 – 2D/3D graphics, programmable shaders
 – 2D/3D compositing, CAD data, Animation
 – Spatialized audio and video, User interaction
 – Navigation, Scripting, Networking, Simulation
• See www.web3d.org for more info

Issues with 3D “mesh” formats
• Easy to acquire
• Easy to render
• Harder to model with
• Error prone
 – split faces, holes, gaps, etc

BRep Data Structures
• Winged-Edge Data Structure (Weiler)
• Vertex
 – n edges
• Edge
 – 2 vertices
 – 2 faces
• Face
 – m edges

BRep Data Structure
• Vertex structure
 – X,Y,Z point
 – Pointers to n coincident edges
• Face structure
 – Pointers to m edges
• Edge structure
 – 2 pointers to end-point vertices
 – 2 pointers to adjacent faces
 – Pointer to next edge
 – Pointer to previous edge

Biparametric Surfaces
• Biparametric surfaces
 – A generalization of parametric curves
 – 2 parameters: s, t (or u, v)
 – Two parametric functions

Biparametric Patch
• (u,v) pair maps to a 3D point on patch
 \[F(u,v) = (x,y,z) = (x(u,v), y(u,v), z(u,v)) \]
Bicubic Surfaces

- Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \([s^3 \ s^2 \ s \ 1]\)
- For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:
 \[
 Q(s, t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S
 \]

Observations About Bicubic Surfaces

- For a fixed \(t \), \(Q(s, t) \) is a curve
- Gradually incrementing \(t \) from \(t_0 \) to \(t_f \), we get a new curve
- The combination of these curves is a surface
- \(G_i(t) \) are 3D curves

Bicubic Surfaces

- Each \(G_i(t) \) is \(G_i(t) = G_1 \cdot M \cdot T \), where
 \[
 G_1 = \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\
 \end{bmatrix}
 \]
- Transposing \(G_i(t) \), we get
 \[
 G_i(t) = T^T \cdot M^T \cdot G_i^T
 \]
 \[
 = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \end{bmatrix}^T
 \]

Bicubic Surfaces

- Substituting \(G_i(t) \) into \(Q(s) = G \cdot M \cdot S \),
 we get \(Q(s, t) \)
- The \(g_{ii} \), etc. are the control points for the Bicubic surface patch:
 \[
 Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\
 g_{12} & g_{22} & g_{32} & g_{42} \\
 g_{13} & g_{23} & g_{33} & g_{43} \\
 g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S
 \]

Bicubic Bézier Patch

- Bézier Surfaces (similar definition)
 \[
 x(s, t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S
 \]
 \[
 y(s, t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S
 \]
 \[
 z(s, t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S
 \]
Bicubic Bezier Patch

Using data array \(P = \{p_{ij}\} \)

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = u^iM_i^uPM^v_M
\]

Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs

Cubic Bezier Blending Functions

\[
b(u) = \begin{bmatrix}
(1-u)^3 \\
3u(1-u)^2 \\
3u^2(1-u) \\
u^3
\end{bmatrix}
\]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Faceting Animation
Faceting Overview

- Double loop that increments through the u and v parameters
 - Values between 0 and 1
- For each (u,v) pair calculate 3D point on patch. Keep track of linear index.
- This produces a 2-D array of 3D points on the patch and their indices to the linear array
- Define triangles that tessellate the patch

Defining the Triangles

```c
// This assumes that indices to the vertices are in a 2D array, verts(i,j)
num_tri = 0
for i = 0 to (num_u - 2)
    for j = 0 to (num_v - 2)
        triangles[num_tri++] = (verts[i,j], verts[i+1,j], verts[i+1,j+1])
        triangles[num_tri++] = (verts[i,j], verts[i+1,j+1], verts[i,j+1])
```

Composite Bézier Surfaces

- C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- G^1 continuity achieved when cross-wise CPs are co-linear

Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with G^1 continuity

Bezier Surface: Example

- Increased facet resolution
- Rendered
B-spline Surfaces

\[x(s,t) = T^T \cdot M_{B_s}^T \cdot G_{B_s} \cdot M_{B_t} \cdot S \]
\[y(s,t) = T^T \cdot M_{B_s}^T \cdot G_{B_s} \cdot M_{B_t} \cdot S \]
\[z(s,t) = T^T \cdot M_{B_s}^T \cdot G_{B_s} \cdot M_{B_t} \cdot S \]

- Representation for B-spline patches
- \(C^2 \) continuity across boundaries is automatic with B-splines

Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining

Computing the Normals to Surfaces

- For a bicubic surface, first, compute the \(s \) tangent vector

\[\frac{\delta}{\delta s} Q(s,t) \]
\[= \frac{\delta}{\delta s} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \]
\[= T^T \cdot M^T \cdot G \cdot M \cdot \frac{\delta}{\delta s} (S) \]
\[= T^T \cdot M^T \cdot G \cdot M \cdot \left[3s^2 2s 1 0 \right] \]

Computing the Normals to Surfaces

- Next, compute the \(t \) tangent vector:

\[\frac{\delta}{\delta t} Q(s,t) \]
\[= \frac{\delta}{\delta t} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \]
\[= \frac{\delta}{\delta t} (T^T) \cdot M^T \cdot G \cdot M \cdot S \]
\[= \left[3t^2 2t 1 0 \right]^T \cdot M^T \cdot G \cdot M \cdot S \]

Surface of Revolution

- Rotate planar curve (directrix) around an axis of revolution (z axis)
 - Cross-section is a circle
- Biparametric surface
 - \(u \) of curve
 - \(\theta \) of angle of rotation
- Examples: cylinder, cone, sphere, torus
Surface of Revolution

- Directrix:
 \[D(u) = (f(u), 0, g(u)) \]
- Surface:
 \[S(u, \theta) = (f(u)\cos(\theta), f(u)\sin(\theta), g(u)) \]
 \[0 \leq u \leq 1, \quad 0 \leq \theta \leq 2\pi \]
- Tangents:
 \[\frac{\partial S}{\partial u} = (f'(u)\cos(\theta), f'(u)\sin(\theta), g'(u)) \]
 \[\frac{\partial S}{\partial \theta} = (-f(u)\sin(\theta), f(u)\cos(\theta), 0) \]
 \[N(u, \theta) = \frac{\partial S}{\partial u} \times \frac{\partial S}{\partial \theta} \]

Drawing Parametric Surfaces

- Usually done “patch by patch”
- Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh

Direct Rendering

- Use a scan-line algorithm
 - Evaluate pixel by pixel
 - Problem: How to go from (x,y) “screen space” to point on the 3D patch
 - Easy for a planar polygon where we know max/min y, equations for edges, screen depth
 - Not as easy for parametric surfaces

Issues for Direct Rendering

- Max/Min y coords may not lie on boundaries
- Silhouette edges result from patch bulges
 - Need to track both silhouettes and boundaries
 - What if they intersect?
 - Note: patch edges need not be monotonic in x or y
 - Idea: Scan convert patch plane-by-plane, using scan planes instead of scan lines

Direct Scan Conversion of Patches

- Basic idea
 - Find intersection of patch with XZ plane
 - Producing a planar curve
 - Drawing the curve
 - De Boor, D’Casteleeder
 - Note: if doing rendering, one can compute pixel-by-pixel color values this way
 - Patch: \[x = X(u,v), \quad y = Y(u,v), \quad z = Z(u,v) \]

Patch to Polygon Conversion

Two methods:
- **Object Space Conversion**
 - Techniques
 - Iterative evaluation
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space
- **Image Space Conversion**
 - Resolution: depends on pixels and screen
Object Space Conversion: Uniform Subdivision

Basic Procedure
• Cut parameter space into equal parts
• Find new points on the surface
• Recurse/Repeat “until done”
• Split squares into triangles
• Render

Object Space Conversion: Non-Uniform Subdivision

• Basic idea
 – More facets in areas of high curvature
 – Use change in normals to surface to assess curvature
 • More derivatives
 – Break patch into sub-patches based on curvature changes

Image Space Conversion

• Idea: control subdivision based on screen criteria
 – Minimum pixel area
 • Stop when patch is basically one pixel
 – Screen flatness
 • Stop when patch converges to a polygon
 – Screen flatness of silhouette edges
 • Stop when edge is straight or size of pixel

How do I know if I’ve found a silhouette edge?

• If the viewing ray is tangent to the surface at the point it hits the surface!
 \[\mathbf{N}(X) \cdot \mathbf{L} = 0 \]
 – Where \(\mathbf{N} \) is the normal at the point where \(\mathbf{L} \), the line of sight, hits the surface

Silhouette Determination

Programming Assignment 4

• Process command line arguments
• Read in control points from file
• Double loop through \(u \) & \(v \) parameters
• For each \((u,v)\) pair compute 3D point on Bezier patch
• Once you’ve computed the 3D points, define the triangles that connect them
• If shading, compute exact normals at each mesh vertex
• Output all data as Open Inventor

Xu, et al., U. of Minnesota
Brenner & Hughes, Brown U.
Rowland, et al.