Overview

- 3D model representations
- Mesh formats
- Bicubic surfaces
- Bezier surfaces
- Normals to surfaces
- Direct surface rendering

3D Modeling

- 3D Representations
 - Wireframe models
 - Surface Models
 - Solid Models
 - Meshes and Polygon soups
 - Voxel/Volume models
 - Decomposition-based
 - Octrees, voxels
- Modeling in 3D
 - Constructive Solid Geometry (CSG), Breps and feature-based

Representing 3D Objects

- Exact
 - Wireframe
 - Parametric Surface
 - Solid Model
 - CSG
 - BRep
 - Implicit Solid Modeling

- Approximate
 - Facet / Mesh
 - Just surfaces
 - Voxel
 - Volume info

Representing 3D Objects

- Exact
 - Precise model of object topology
 - Mathematically represent all geometry
- Approximate
 - A discretization of the 3D object
 - Use simple primitives to model topology and geometry

Negatives when Representing 3D Objects

- Exact
 - Complex data structures
 - Expensive algorithms
 - Wide variety of formats, each with subtle nuances
 - Hard to acquire data
 - Translation required for rendering

- Approximate
 - Lossy
 - Data structure sizes can get huge, if you want good fidelity
 - Easy to break (i.e. cracks can appear)
 - Not good for certain applications
 - Lots of interpolation and guess work
Positives when Representing 3D Objects

- ** Exact
 - Precision
 - Simulation, modeling, etc.
- ** Approximate
 - Easy to implement
 - Easy to acquire
 - 3D scanner, CT
 - Easy to render
 - Direct mapping to the graphics pipeline
 - Lots of algorithms

Exact Representations

- ** Wireframe
- ** Parametric Surface
- ** Solid Model
 - operations
 - CSG, BRep, implicit geometry

Wireframes

- ** Basic idea:
 - Represent the model as the set of all of its edges
- ** Example:
 - A simple cube
 - 12 lines
 - 8 vertices
- ** How about the faces?

Issues with Wireframes

- Visually ambiguous
- No surfaces!
 - What’s inside? What’s outside?
 - Hidden line removal?
- What does validity entail?
 - Don’t we just have a bunch of wires?
 - Do they need to add up to something?
- How to model wireframe shapes?
 - Wire by wire? Not very easy!

Surface Models

- ** Basic idea:
 - Represent a model as a set of faces/patches
- ** Limitations:
 - Topological integrity; how do faces “line up”; which way is “inside”/”outside”?
- ** Used in many CAD applications
 - Why? They are fine for drafting and rendering, not as good for creating true physical models

3D Mesh File Formats

Some common formats

- STL
- SMF
- Openinventor
- VRML
- X3D
Minimal

- Vertex + Face
- No colors, normals, or texture
- Primarily used to demonstrate geometry algorithms

Full-Featured

- Colors / Transparency
- Vertex-Face Normals (optional, can be computed)
- Scene Graph
- Lights
- Textures
- Views and Navigation

Simple Mesh Format (SMF)

- Michael Garland http://graphics.cs.uiuc.edu/~garland/
- Triangle data
- Vertex indices begin at 1

Stereolithography (STL)

- Triangle data + Face Normal
- The de-facto standard for rapid prototyping

Open Inventor

- Developed by SGI
- Predecessor to VRML
 - Scene Graph

Virtual Reality Modeling Language (VRML)

- SGML Based
- Scene-Graph
- Full Featured
X3D
- Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
- Supports
 - 2D/3D graphics, programmable shaders
 - 2D/3D compositing, CAD data, Animation
 - Spatialized audio and video, User interaction
 - Navigation, Scripting, Networking, Simulation
- See www.web3d.org for more info

Issues with 3D “mesh” formats
- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc

BRep Data Structures
- Winged-Edge Data Structure (Weiler)
- Vertex
 - n edges
- Edge
 - 2 vertices
 - 2 faces
- Face
 - m edges

BRep Data Structure
- Vertex structure
 - X,Y,Z point
 - Pointers to n coincident edges
- Edge structure
 - 2 pointers to end-point vertices
 - 2 pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge
- Face structure
 - Pointers to m edges

Biparametric Surfaces
- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions

Biparametric Patch
- (u,v) pair maps to a 3D point on patch
 \[F(u,v) = (x,y,z) = (x(u,v), y(u,v), z(u,v)) \]
Bicubic Surfaces

- Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \([s^3 \ s^2 \ s \ 1]\)
- For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:
 \[
 Q(s,t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S
 \]

Observations About Bicubic Surfaces

- For a fixed \(t_1 \), \(Q(s,t_1) \) is a curve
- Gradually incrementing \(t_1 \) to \(t_2 \), we get a new curve
- The combination of these curves is a surface
- \(G_i(t) \) are 3D curves

Bicubic Surfaces

- Each \(G_i(t) \) is \(G_i(t) = G_i \cdot M \cdot T \), where
 \[
 G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}
 \]
- Transposing \(G_i(t) \), we get
 \[
 G_i(t) = T^T \cdot M^T \cdot G_i^T
 = T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}
 \]

Bicubic Surfaces

- Substituting \(G_i(t) \) into \(Q(s) = G \cdot M \cdot S \), we get \(Q(s, t) \)
- The \(g_{ij} \), etc. are the control points for the Bicubic surface patch:
 \[
 Q(s,t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{12} & g_{13} & g_{14} & g_{15} \\ g_{13} & g_{14} & g_{15} & g_{16} \\ g_{14} & g_{15} & g_{16} & g_{17} \end{bmatrix} \cdot M \cdot S
 \]

Bicubic Surfaces

- Writing out gives
 \[
 x(s,t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S
 \]
 \[
 y(s,t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S
 \]
 \[
 z(s,t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S
 \]

Bicubic Bézier Patch

- Bézier Surfaces (similar definition)
 \[
 x(s,t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S
 \]
 \[
 y(s,t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S
 \]
 \[
 z(s,t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S
 \]
Bicubic Bezier Patch

Using same data array \(P = [p_{ij}] \) as with interpolating form

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \tilde{p}_{ij} = u^3 M_d P M_i v
\]

Patch lies in convex hull

Bicubic Bézier Patches

- Expanding the summation

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \tilde{p}_{ij} = b_0(u) b_0(v) \tilde{p}_{00} + b_0(u) b_1(v) \tilde{p}_{01} + b_0(u) b_2(v) \tilde{p}_{02} + b_0(u) b_3(v) \tilde{p}_{03} + b_1(u) b_0(v) \tilde{p}_{10} + b_1(u) b_1(v) \tilde{p}_{11} + b_1(u) b_2(v) \tilde{p}_{12} + b_1(u) b_3(v) \tilde{p}_{13} + \text{etc.}
\]

0 \leq u, v \leq 1

Cubic Bezier Blending Functions

\[
b(u) = \begin{bmatrix}
(1-u)^3 \\
3u(1-u)^2 \\
3u^2(1-u) \\
u^3
\end{bmatrix}
\]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Faceting Animation
Faceting Overview

- Double loop that increments through the \(u \) and \(v \) parameters
 - Values between 0 and 1
- For each \((u,v)\) pair calculate 3D point on patch
- This produces a 2-D array of 3D points on the patch
- Define triangles that tessellate the patch

Composite Bézier Surfaces

- \(C^0 \) and \(G^0 \) continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- \(G^1 \) continuity achieved when cross-wise CPs are co-linear

Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with \(G^1 \) continuity

Beziers Surface: Example

- Increased facet resolution
- Rendered

B-spline Surfaces

\[
\begin{align*}
x(s,t) &= T^T \cdot M_{B_s} \cdot G_{B_s} \cdot M_{B_t} \cdot S \\
y(s,t) &= T^T \cdot M_{B_s} \cdot G_{B_s} \cdot M_{B_t} \cdot S \\
z(s,t) &= T^T \cdot M_{B_s} \cdot G_{B_s} \cdot M_{B_t} \cdot S
\end{align*}
\]

- Representation for B-spline patches
- \(C^2 \) continuity across boundaries is automatic with B-splines

Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining
Computing the Normals to Surfaces

- For a bicubic surface, first, compute the s tangent vector:

$$\frac{\delta}{\delta s} Q(s,t) = \frac{\delta}{\delta s} (T^T \cdot M^T \cdot G \cdot M \cdot S) = T^T \cdot M^T \cdot G \cdot M \cdot \left[\begin{array}{c} 3x^2 \ 2t \ 1 \ 0 \end{array} \right]$$

- Next, compute the t tangent vector:

$$\frac{\delta}{\delta t} Q(s,t) = \frac{\delta}{\delta t} (T^T \cdot M^T \cdot G \cdot M \cdot S) = \left[\begin{array}{c} 3 \ 2t \ 1 \ 0 \end{array} \right]^T \cdot M^T \cdot G \cdot M \cdot S$$

Computing the Normals to Surfaces

- Since s and t are tangent to the surface, their cross product is the normal vector to the surface:

$$\frac{\delta}{\delta s} Q(s,t) \times \frac{\delta}{\delta t} Q(s,t) = \left[\begin{array}{c} y_t z_s - y_s z_t \ z_t x_s - z_s x_t \ x_t y_s - x_s y_t \end{array} \right]$$

- x_s - x component of s tangent
- y_s - y component of s tangent
- z_s - z component of s tangent

Drawing Parametric Surfaces

- Usually done “patch by patch”
- Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh

Direct Rendering

- Use a scan-line algorithm
 - Evaluate pixel by pixel
 - Problem: How to go from (x,y) “screen space” to point on the 3D patch
 - Easy for a planar polygon where we know max/min y, equations for edges, screen depth
 - Not as easy for parametric surfaces

Issues for Direct Rendering

- Max/Min y coords may not lie on boundaries
- Silhouette edges result from patch bulges
 - Need to track both silhouettes and boundaries
 - What if they intersect?
 - Note: patch edges need not be monotonic in x or y
 - Idea: Scan convert patch plane-by-plane, using scan planes instead of scan lines
Direct Scan Conversion of Patches

- Basic idea
 - Find intersection of patch with XZ plane
 - Producing a planar curve
 - Draw the curve
 - De Boor, D’Casteljau
 - Note: if doing rendering, one can compute pixel-by-pixel color values this way
 - Patch: $x=X(u,v)$, $y=Y(u,v)$, $z=Z(u,v)$

Patch to Polygon Conversion

Two methods:

- **Object Space Conversion**
 - Techniques
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space
- **Image Space Conversion**
 - Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure
- Cut parameter space into equal parts
- Find new points on the surface
- Recurse/Repeat “until done”
- Split squares into triangles
- Render

Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes

Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel

How do I know if I’ve found a silhouette edge?

- If the viewing ray is tangent to the surface at the point it hits the surface!
 - \(N \cdot L = 0 \)
- Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface
Silhouette Determination

\[\mathbf{N} \cdot \mathbf{L} = 0 \]

Brenner & Hughes, Biome Li

Programming Assignment 3

- Process command line arguments
- Read in control points from file
- Double loop through u & v parameters
- For each (u,v) pair compute 3D point on Bezier patch
- Once you’ve computed the 3D points, define the triangles that connect them
- If shading, compute exact normals at each mesh vertex
- Output all data as Open Inventor