CS 536
Computer Graphics

Surfaces

Week 5, Lecture 7

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Overview

- 3D model representations
- Mesh formats
- Bicubic surfaces
- Bezier surfaces
- Normals to surfaces
- Direct surface rendering
3D Modeling

• 3D Representations
 – Wireframe models
 – Surface Models
 – Solid Models
 – Meshes and Polygon soups
 – Voxel/Volume models
 – Decomposition-based
 • Octrees, voxels

• Modeling in 3D
 – Constructive Solid Geometry (CSG),
 Breps and feature-based
Representing 3D Objects

- **Exact**
 - Wireframe
 - Parametric Surface
 - Solid Model
 - CSG
 - BRep
 - Implicit Solid Modeling

- **Approximate**
 - Facet / Mesh
 - Just surfaces
 - Voxel
 - Volume info
Representing 3D Objects

• Exact
 – Precise model of object topology
 – Mathematically represent all geometry

• Approximate
 – A discretization of the 3D object
 – Use simple primitives to model topology and geometry
Positives when Representing 3D Objects

- **Exact**
 - Precision
 - Simulation, modeling, etc.
 - Lots of modeling environments
 - Physical properties
 - High-level control
 - Many applications (tool path generation, motion, etc.)
 - Compact

- **Approximate**
 - Easy to implement
 - Easy to acquire
 - 3D scanner, CT
 - Easy to render
 - Direct mapping to the graphics pipeline
 - Lots of algorithms
Negatives when Representing 3D Objects

• Exact
 – Complex data structures
 – Expensive algorithms
 – Wide variety of formats, each with subtle nuances
 – Hard to acquire data
 – Translation required for rendering

• Approximate
 – Lossy
 – Data structure sizes can get HUGE, if you want good fidelity
 – Easy to break (i.e. cracks can appear)
 – Not good for certain applications
 • Lots of interpolation and guess work
Exact Representations

- Wireframe
- Parametric Surface
- Solid Model
 - operations
 - CSG, BRep, implicit geometry
Wireframes

• Basic idea:
 – Represent the model as the set of all of its edges

• Example:
 A simple cube
 – 12 lines
 – 8 vertices

• How about the faces?

Foley/VanDam, 1990/1994
Issues with Wireframes

- Visually ambiguous
- No surfaces!
 - What’s inside? What’s outside?
 - Hidden line removal?
- What does validity entail?
 - Don’t we just have a bunch of wires?
 - Do they need to add up to something?
- How to model wireframe shapes?
 - Wire by wire? Not very easy!
Surface Models

- **Basic idea:**
 - Represent a model as a set of faces/patches

- **Limitations:**
 - Topological integrity; how do faces “line up”?; which way is ‘inside’ / ‘outside’?

- **Used in many CAD applications**
 - Why? They are fine for drafting and rendering, not as good for creating true physical models
3D Mesh File Formats

Some common formats

- STL
- SMF
- OpenInventor
- VRML
- X3D
Minimal

- Vertex + Face
- No colors, normals, or texture
- Primarily used to demonstrate geometry algorithms
Full-Featured

- Colors / Transparency
- Vertex-Face Normals (optional, can be computed)
- Scene Graph
- Lights
- Textures
- Views and Navigation
Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

- Triangle data

- Vertex indices begin at 1

```plaintext
#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
```
Stereolithography (STL)

- Triangle data + Face Normal
- The de-facto standard for rapid prototyping

```
solid
...
facet normal 0.00 0.00 1.00
  outer loop
    vertex 2.00 2.00 0.00
    vertex -1.00 1.00 0.00
    vertex 0.00 -1.00 0.00
  endloop
endfacet
...
endsolid
```
Open Inventor

- Developed by SGI
- Predecessor to VRML
 - Scene Graph
Virtual Reality Modeling Language (VRML)

- SGML Based
- Scene-Graph
- Full Featured

#VRML V2.0 utf8
A Cylinder
Shape {
 appearance Appearance {
 material Material {
 }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}
X3D

- Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
- Supports
 - 2D/3D graphics, programmable shaders
 - 2D/3D compositing, CAD data, Animation
 - Spatialized audio and video, User interaction
 - Navigation, Scripting, Networking, Simulation
- See www.web3d.org for more info
Issues with 3D “mesh” formats

- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc
BRep Data Structures

- Winged-Edge Data Structure (Weiler)
- Vertex
 - n edges
- Edge
 - 2 vertices
 - 2 faces
- Face
 - m edges
BRep Data Structure

- **Vertex structure**
 - X,Y,Z point
 - Pointers to \(n \) coincident edges

- **Face structure**
 - Pointers to \(m \) edges

- **Edge structure**
 - 2 pointers to end-point vertices
 - 2 pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge
Biparametric Surfaces

- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions
Biparametric Patch

- (u,v) pair maps to a 3D point on patch $F(u,v) = (x, y, z) = (x(u,v), y(u,v), z(u,v))$
Bicubic Surfaces

• Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 – \(G \): Geometry Matrix
 – \(M \): Basis Matrix
 – \(S \): Polynomial Terms \([s^3 \ s^2 \ s \ 1]\)

• For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:

\[
Q(s, t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S
\]
Observations About Bicubic Surfaces

• For a fixed \(t_1 \), \(Q(s, t_1) \) is a curve
• Gradually incrementing \(t_1 \) to \(t_2 \), we get a new curve
• The combination of these curves is a surface
• \(G_i(t) \) are 3D curves
Bicubic Surfaces

• Each $G_i(t)$ is $G_i(t) = G_i \cdot M \cdot T$, where

$$G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}$$

• Transposing $G_i(t)$, we get

$$G_i(t) = T^T \cdot M^T \cdot G_i^T$$

$$= T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$
Bicubic Surfaces

• Substituting $G_i(t)$ into $Q(s) = G \cdot M \cdot S$, we get $Q(s, t)$

• The g_{11}, etc. are the control points for the Bicubic surface patch:

$$Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S$$
Bicubic Surfaces

• Writing out $Q(s, t) = T^T \cdot M^T \cdot G \cdot M \cdot S \quad 0 \leq s, t \leq 1$ gives

\[
x(s, t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S
\]
\[
y(s, t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S
\]
\[
z(s, t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S
\]
Bicubic Bézier Patch

• Bézier Surfaces (similar definition)

\[x(s,t) = T^T \cdot M_B^T \cdot G_{B_x} \cdot M_B \cdot S \]
\[y(s,t) = T^T \cdot M_B^T \cdot G_{B_y} \cdot M_B \cdot S \]
\[z(s,t) = T^T \cdot M_B^T \cdot G_{B_z} \cdot M_B \cdot S \]
Bicubic Bezier Patch

Using data array $P = [\bar{p}_{ij}]$

$$\bar{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v) \bar{p}_{ij} = u^T M_B P M_B^T v$$
Bicubic Bézier Patches

• Expanding the summation

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \tilde{p}_{ij} = b_0(u) b_0(v) \tilde{p}_{00} + b_0(u) b_1(v) \tilde{p}_{01} + b_0(u) b_2(v) \tilde{p}_{02} + b_0(u) b_3(v) \tilde{p}_{03} + b_1(u) b_0(v) \tilde{p}_{10} + \text{etc.}
\]

\[0 \leq u, v \leq 1\]
Cubic Bezier Blending Functions

\[b(u) = \begin{bmatrix}
(1 - u)^3 \\
3u(1 - u)^2 \\
3u^2(1 - u) \\
u^3
\end{bmatrix} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)
Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs
Plotting Isolines
Faceting Animation
Faceting
Faceting Overview

• Double loop that increments through the u and v parameters
 – Values between 0 and 1
• For each (u,v) pair calculate 3D point on patch. Keep track of linear index.
• This produces a 2-D array of 3D points on the patch and their indices to the linear array
• Define triangles that tessellate the patch
Defining the Triangles

// This assumes that indices to the vertices are
// in a 2D array, verts(i,j)

num_tri = 0
for i = 0 to (num_u - 2)
 for j = 0 to (num_v - 2)
 triangles[num_tri++] = (verts[i,j], verts[i+1,j],
 verts[i+1,j+1])
 triangles[num_tri++] = (verts[i,j], verts[i+1,j+1],
 verts[i,j+1])
Composite Bézier Surfaces

- C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal.

- G^1 continuity achieved when cross-wise CPs are co-linear.
Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with G^1 continuity
Beziers Surface: Example

- Increased facet resolution
- Rendered
B-spline Surfaces

\[
x(s, t) = T^T \cdot M_{Bs}^T \cdot G_{Bs_x} \cdot M_{Bs} \cdot S
\]

\[
y(s, t) = T^T \cdot M_{Bs}^T \cdot G_{Bs_y} \cdot M_{Bs} \cdot S
\]

\[
z(s, t) = T^T \cdot M_{Bs}^T \cdot G_{Bs_z} \cdot M_{Bs} \cdot S
\]

- Representation for B-spline patches
- \(C^2\) continuity across boundaries is automatic with B-splines
Normals to Surfaces

• Normals used for
 – Shading
 – Interference detection in robotics
 – Calculating offsets for numerically controlled machining
Computing the Normals to Surfaces

• For a bicubic surface, first, compute the s tangent vector

\[
\frac{\delta}{\delta s} Q(s, t) \\
= \frac{\delta}{\delta s} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \\
= T^T \cdot M^T \cdot G \cdot M \cdot \frac{\delta}{\delta s} (S) \\
= T^T \cdot M^T \cdot G \cdot M \cdot \begin{bmatrix} 3s^2 & 2s & 1 & 0 \end{bmatrix}
\]
Computing the Normals to Surfaces

• Next, compute the t tangent vector:

$$\frac{\delta}{\delta t} Q(s, t)$$

$$= \frac{\delta}{\delta t} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right)$$

$$= \frac{\delta}{\delta t} (T^T) \cdot M^T \cdot G \cdot M \cdot S$$

$$= \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}^T \cdot M^T \cdot G \cdot M \cdot S$$
Computing the Normals to Surfaces

• Since \(s \) and \(t \) are tangent to the surface, their cross product is the normal vector to the surface!

\[
\frac{\delta}{\delta s} Q(s,t) \times \frac{\delta}{\delta t} Q(s,t) = \left[y_s z_t - y_t z_s , z_s x_t - z_t x_s , x_s y_t - x_t y_s \right]
\]

• \(x_s \) - x component of \(s \) tangent
• \(y_s \) - y component of \(s \) tangent
• \(z_s \) - z component of \(s \) tangent
Surface of Revolution

• Rotate planar curve (*directrix*) around an *axis of revolution* (*z* axis)
 – Cross-section is a circle

• Biparametric surface
 – *u* of curve
 – *θ* of angle of rotation

• Examples: cylinder, cone, sphere, torus
Surface of Revolution

• Directrix:
 – \(D(u) = (f(u), 0, g(u)) \)

• Surface:
 – \(S(u, \theta) = (f(u)\cos(\theta), f(u)\sin(\theta), g(u)) \)
 – \(0 \leq u \leq 1, \ 0 \leq \theta \leq 2\pi \)

• Tangents:
 – \(\frac{\partial S}{\partial u} = (f'(u)\cos(\theta), f'(u)\sin(\theta), g'(u)) \)
 – \(\frac{\partial S}{\partial \theta} = (-f(u)\sin(\theta), f(u)\cos(\theta), 0) \)
 – \(N(u, \theta) = \frac{\partial S}{\partial u} \times \frac{\partial S}{\partial \theta} \)
Drawing Parametric Surfaces

• Usually done “patch by patch”
• Two choices
 – Draw/render *directly* from the parametric description
 – Approximate the surface with a *polygon* mesh, then draw/render the mesh
Direct Rendering

• Use a scan-line algorithm
 – Evaluate pixel by pixel
 – Problem: How to go from \((x,y)\) “screen space” to point on the 3D patch
 • Easy for a planar polygon where we know max/min \(y\), equations for edges, screen depth
 • Not as easy for parametric surfaces
Issues for Direct Rendering

• Max/Min y coords may not lie on boundaries
• Silhouette edges result from patch bulges
 – Need to track both silhouettes and boundaries
 • What if they intersect?
 • Note: patch edges need not be monotonic in x or y
• Idea: Scan convert patch *plane-by-plane*, using scan planes instead of scan lines
Direct Scan Conversion of Patches

• Basic idea
 – Find intersection of patch with XZ plane
 • Producing a planar curve
 – Draw the curve
 • De Boor, D’ Casteljeau
 – Note: if doing rendering, one can compute pixel-by-pixel color values this way
 – Patch: \(x=X(u,v), y=Y(u,v), z=Z(u,v) \)
Patch to Polygon Conversion

Two methods:

• **Object Space Conversion**
 – Techniques
 • Iterative evaluation
 • Uniform subdivision
 • Non-uniform subdivision
 – Resolution: depends on object space

• **Image Space Conversion**
 – Resolution: depends on pixels and screen
Object Space Conversion: Uniform Subdivision

Basic Procedure

• Cut parameter space into equal parts
• Find new points on the surface
• Recurse/Repeat “until done”
• Split squares into triangles
• Render
Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes
Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel
How do I know if I’ve found a silhouette edge?

• If the viewing ray is tangent to the surface at the point it hits the surface!

\[N(X) \cdot L = 0 \]

– Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface
Silhouette Determination

\[\mathbf{N} \cdot \mathbf{L} = 0 \]

Brenner & Hughes, Brown U.

Xu, et al., U. of Minnesota

Kowalski, et al.
Programming Assignment 4

• Process command line arguments
• Read in control points from file
• Double loop through u & v parameters
• For each (u,v) pair compute 3D point on Bezier patch
• Once you’ve computed the 3D points, define the triangles that connect them
• If shading, compute exact normals at each mesh vertex
• Output all data as Open Inventor