CS 536
Computer Graphics

Solid Modeling

Week 7, Lecture 13

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Overview

• Solid Modeling
 – Boolean operations
 – Constructive Solid Geometry
Solids and Solid Modeling

• Solid modeling introduces a mathematical theory of solid shape
 – Domain of objects
 – Objects have a clearly-defined inside and outside
 – Set of operations on the domain of objects
 – Representation that is
 • Unambiguous
 • Accurate
 • Unique
 • Compact
 • Efficient
Solid Objects and Operations

- Solids are point sets
 - Boundary and interior
- Point sets can be operated on with boolean algebra (union, intersect, etc)
Solid Object Definitions

• Boundary points
 – Points where distance to the object and the object’s complement is zero

• Interior points
 – All the other points in the object

• Closure
 – Union of interior points and boundary points
Issues with 3D Set Operations

• Ops on 3D objects can create “non-3D objects” or objects with non-uniform dimensions
• Objects need to be “Regularized”
 – Take the closure of the interior

<table>
<thead>
<tr>
<th>Input set</th>
<th>Closure</th>
<th>Interior</th>
<th>Regularized</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
</tbody>
</table>
Regularized Boolean Operations

• 3D Example
 – Two solids A and B
 – Intersection leaves a “dangling wall”
 • A 2D portion hanging off a 3D object
 – Closure of interior gives a uniform 3D result

Pics/Math courtesy of Dave Mount @ UMD-CP
Boolean Operations

- Other Examples:
- (c) ordinary intersection
- (d) regularized intersection
 - AB - objects on the same side
 - CD - objects on different sides
Boolean Operations
Constructive Solid Geometry (CSG)

- A tree structure combining primitives via regularized boolean operations
- Primitives can be solids or half spaces
A Sequence of Boolean Operations

- Boolean operations
- Rigid transformations
The Induced CSG Tree
The Induced CSG Tree

• Can also be represented as a directed acyclic graph (DAG)
Issues with Constructive Solid Geometry

• Non-uniqueness
• Choice of primitives
• How to handle more complex modeling?
 – Sculpted surfaces? Deformable objects?
Issues with Constructive Solid Geometry

• Non-Uniqueness
 – There is more than one way to model the same artifact
 – Hard to tell if A and B are identical
Issues with CSG

- Minor changes in primitive objects greatly affect outcomes
- Shift up top solid face

Foley/VanDam, 1990/1994
Evaluating CSG Surface Points

• Given two solid primitives A and B, compute points on the surface of each primitive
• Test if points will be on the surface of evaluated CSG model A * B
• Use rules based on inside-outside status of the points relative to A and B
• Display points that follow rules
CSG Surface Point Rules

<table>
<thead>
<tr>
<th>Operation</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| \(A \cup B \) | On A and (On B || Outside of B)
On B and (On A || Outside of A) |
| \(A \cap B \) | On A and (On B || Inside of B)
On B and (On A || Inside of A) |
| \(A - B \) | On A and (On B || Outside of B)
On B and (On A || Inside of A) |
| \(B - A \) | On A and (On B || Inside of B)
On B and (On A || Outside of A) |

These are the points on the evaluated surface
CSG Examples

<table>
<thead>
<tr>
<th>MANIFOLD INPUTS</th>
<th>UNION</th>
<th>INTERSECTION</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGULAR OPERATIONS</th>
<th>UNION</th>
<th>INTERSECTION</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 body</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uses of CSG
Constructive Solid Geometry

• Found (basically) in every CAD system
• Elegant, conceptually and algorithmically appealing
• Good for
 – Rendering, ray tracing, simulation
 – BRL CAD
CAD: Feature-Based Design

• CSG is the basic machinery behind CAD features

• Features are
 – Local modifications to object geom/topo with engineering significance
 – Often are additive or subtractive mods to shape
 • Hole, pocket, etc…
Parametric Modeling in CAD

- Feature relationships
- Constraints

(a) Gear
- Diam = 4.3
- Hub = 2.0
- Thickness = 0.5
- Teeth = 12
- Hole = 0.3

(b) Gear
- Diam = 6.0
- Hub = 1.0
- Thickness = 0.4
- Teeth = 18
- Hole = 0.3