Overview

- 3D solid model representations
 - Implicit models
 - Super/quadrics
 - Blobbies
 - Swept objects
 - Boundary representations
 - Spatial enumerations
 - Distance fields
 - Quadrees/octrees
 - Stochastic models

Implicit Solid Modeling

- Idea:
 - Represents solid as the set of points where an implicit global function takes on certain values
 - Usually
 - $F(x,y,z) < 0$, points inside of object
 - $F(x,y,z) = 0$, points on object’s surface
 - $F(x,y,z) > 0$, points outside of object
 - Primitive solids are combined using CSG
 - Composition operations are implemented by functionals which provide an implicit function for the resulting solid

Quadratic Surfaces

- Sphere
 $$x^2 + y^2 + z^2 = r^2$$
- Ellipsoid
 $$\frac{x^2}{s_1^2} + \frac{y^2}{s_2^2} + \frac{z^2}{s_3^2} = 1$$
- Torus
 $$\left(\frac{x}{r_1}\right)^2 + \left(\frac{y}{r_2}\right)^2 = 1$$
- General form
 $$a \cdot x^2 + b \cdot y^2 + c \cdot z^2 + 2f \cdot yz + 2g \cdot xz + 2h \cdot xy + 2p \cdot x + 2q \cdot y + 2r \cdot z + d = 0$$

Superellipsoid Surfaces

- Generalization of ellipsoid
- Control parameters s_1 and s_2
 $$\left[\left(\frac{x}{r_1}\right)^{\frac{1}{s_1}} + \left(\frac{y}{r_2}\right)^{\frac{1}{s_1}} + \left(\frac{z}{r_3}\right)^{\frac{1}{s_1}}\right]^{s_1} = 1$$
- If $s_1 = s_2 = 1$ then regular ellipsoid
- Has an implicit and a parametric form!
Superellipsoid Surfaces

- Normals defined by
 \[n_x(u,v) = \frac{1}{A}c(v, 2 - s_1)c(u, 2 - s_2) \]
 \[n_y(u,v) = \frac{1}{B}c(v, 2 - s_1)s(u, 2 - s_2) \]
 \[n_z(u,v) = (1/C)s(v, 2 - s_1) \]

- A, B and C are scale factors of the X, Y & Z coordinates
- \(s_1 \) is the shape parameter for longitude lines
- \(s_2 \) is the shape parameter for latitude lines

Superellipsoid Inside-Outside Function

\[
F(x, y, z) = \left[\left(\frac{x}{r_x} \right)^{2/s_2} + \left(\frac{y}{r_y} \right)^{2/s_2} \right]^{s_2/s_1} + \left(\frac{z}{r_z} \right)^{2/s_1} - 1
\]

CSG with Superquadrics

Blobby Objects

- Do not maintain shape, topology
 - Water drops
 - Molecules
 - Force fields
- But can maintain other properties, like volume
Gaussian Bumps

- Model object as a sum of Gaussian bumps/blobs
 \[f(x, y, z) = \sum_{k} b_i e^{-\alpha \| r_k \|^2} - T = 0 \]
- Where \(r_k^2 = x_k^2 + y_k^2 + z_k^2 \) and \(T \) is a threshold.

Metaballs (Blinn Blobs)

Ray-traced Metaballs

Implicit Modeling System

- Combine "primitives"
 - Points, lines, planes, polygons, cylinders, ellipsoids
- Calculate field around primitives
- View iso-surface of implicit function

Implicit Modeling System

Sweep Representations

- An alternative way to represent a 3D object
- Idea
 - Given a primitive (e.g. polygon, sphere)
 - And a sweep (e.g. vector, curve…)
 - Define solid as space swept out by primitive
Sweep Representations

- Issues:
 - How to generate resulting surface?
 - What about self-intersections?
 - How to define intersection?

Foley/VanDam, 1990/1994

Approximate Representations

- Idea: discretize the world!
- Surface Models
 - Mesh, facet and polygon representations
- Volume Models
 - spatial enumeration
 - voxelization

Examples

- From exact to facets…

Pics/Math courtesy of Dave Mount @ UMD - CP

Boundary Representation Solid Modeling

- The de facto standard for CAD since ~1987
 - BReps integrated into CAGD surfaces + analytic surfaces + boolean modeling
- Models are defined by their boundaries
- Topological and geometric integrity constraints are enforced for the boundaries
 - Faces meet at shared edges, vertices are shared, etc.

Let’s Start Simple: Polyhedral Solid Modeling

- Definition
 - Solid bounded by polygons whose edges are each a member of an even number of polygons
 - A 2-manifold: edges members of 2 polygons

Properties of 2-Manifolds

- For any point on the boundary, its neighborhood is a topological 2D disk
- If not a 2-manifold, neighborhood not a disk
Euler’s Formula

- For simple polyhedron (no holes):
 \#Vertices - \#Edges + \#Faces = 2
- If formula is true the surface is closed

Euler’s Formula (Generalized)

- \#Vertices - \#Edges + \#Faces - \#Holes in faces = 2
- Genus is the \# holes through the object
- Euler Operators have been the basis of several modeling systems (Mantyla et al.)

Euler Operators

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Make a shell and a hole</td>
<td>+1</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEKL</td>
<td>Make an edge and kill a loop</td>
<td>+1</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steps to Creating a Polyhedral Solid Modeler

- Representation
 - Points, Lines/Edges, Polygons
- Modeling
 - Generalization of 3D clipping to non-convex polyhedra, enables implementation of booleans

State of the Art: BRep Solid Modeling

- ... but much more than polyhedra
- Two main (commercial) alternatives
 - All NURBS, all the time
 - ProE, SDRC, ...
 - Analytic surfaces + parametric surfaces + NURBS + ... all stitched together at edges
 - Parasolid, ACIS, ...

Issues in Boundary Representation Solid Modeling

- Very complex data structures
 - NURBS-based winged-edges, etc
- Complex algorithms
 - manipulation, booleans, collision detection
- Robustness
- Integrity
- Translation
- Features
- Constraints and Parametrics
Other Issues: Non-Manifold Solids

- There are cases where you may need to model entities that are not entirely 3D

Spatial Occupancy Enumeration

- Brute force
 - A grid
- Pixels
 - Picture elements
- Voxels
 - Volume elements
- Quadtrees
 - 2D adaptive representation
- Octrees
 - 3D adaptive representation
 - Extension of quadtrees

Brute Force Spatial Occupancy Enumeration

- Impose a 2D/3D grid
 - Like graph paper or sugar cubes
- Identify occupied cells
- Problems
 - High fidelity requires many cells
- “Modified”
 - Partial occupancy

Distance Volume

- Store signed distance to surface at each voxel

Offset Surfaces from Distance Volumes

- Iso-surface at value 0 approximates the original surface.
Quadtree

- Hierarchically represent spatial occupancy
- Tree with four regions
 - NE, NW, SE, SW
 - “dark” if occupied

Quadtree Data Structure

- Hierarchical representation

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Quad tree numbering

- F = full
- P = partially full
- E = empty

Octree

- 8 octants 3D space
 - Left, Right, Up, Down, Front, Back

Boolean Operations on Octrees

- $S \cup T$
- $S \cap T$

Applications for Spatial Occupancy Enumeration

- Many different applications
 - GIS
 - Medical
 - Engineering Simulation
 - Volume Rendering
 - Video Gaming
 - Approximating real-world data
 - ….
Issues with Spatial Occupancy Enumeration

- Approximate
 - Kind of like faceting a surface, discretizing 3D space
 - Operationally, the combinatorics (as opposed to the numerics) can be challenging
 - Not as good for applications wanting exact computation (e.g. tool path programming)

Binary Space Partition Trees (BSP Trees)

- Recursively divide space into subspaces
- Arbitrary orientation and position of planes
- Homogeneous regions are leaves called in/out cells

Statistical Representations

- Store density (material vs. void)
- Statistical description of geometry
- Goal – describe the porosity without storing the geometry information

Stochastic Geometry

- Need some way of converting a solid into some representative statistical form
- From each material voxel, calculate the distance to the nearest voxel that is not material
- Repeat for void voxels
- Store distributions:
 - one for empty space
 - one for material
 - density value

Application: Biological Models

- Bone tissue
- MRI data
- Other biological data
- Solid modeling

Distance vs. Probability

Generated by Termite Agents Simulation.

MRI scan of left shoulder

Bone matrix from scanned data
Application: Surface Texture

Overview
- 3D solid model representations
 - Implicit models
 - Super/quadrics
 - Blobs
 - Swept objects
 - Boundary representations
 - Spatial enumerations
 - Distance fields
 - Quadtrees/octrees
 - Stochastic models

Programming Assignment 4
- Implement parametric form of superellipsoids
- Iterate through u and v parameters
- Calculate point and normal for each (u,v) pair
- Only calculate one point at each of the poles
- Top and bottom rows should be a triangle fan with poles at center
- Other rows are quads that are broken into triangles
- Output mesh as Open Inventor

End