Overview

• 3D solid model representations
 – Implicit models
 – Super/quadrics
 – Blobs
 – Swept objects
 – Boundary representations
 – Spatial enumerations
 – Distance fields
 – Quadtrees/octrees
 – Stochastic models

Implicit Solid Modeling

• Idea:
 – Represents solid as the set of points where an implicit global function takes on certain values
 • Usually
 – \(F(x,y,z) < 0 \), points inside of object
 – \(F(x,y,z) = 0 \), points on object’s surface
 – \(F(x,y,z) > 0 \), points outside of object

 – Primitive solids are combined using CSG
 – Composition operations are implemented by functionals which provide an implicit function for the resulting solid

Quadratic Surfaces

• Sphere
 \[x^2 + y^2 + z^2 = r^2 \]

• Ellipsoid
 \[\left(\frac{x}{a} \right)^{s_2} + \left(\frac{y}{b} \right)^{s_2} + \left(\frac{z}{c} \right)^{s_2} = 1 \]

• Torus
 \[\left(\sqrt{x^2 + y^2} - R \right)^2 + z^2 = r^2 \]

• General form
 \[a \cdot x^2 + b \cdot y^2 + c \cdot z^2 + 2f \cdot xy + 2g \cdot xz + 2h \cdot yz + 2p \cdot x + 2q \cdot y + 2r \cdot z + d = 0 \]

Superellipsoid Surfaces

• Generalization of ellipsoid
• Shape parameters \(s_1 \) and \(s_2 \)

\[\left[\left(\frac{x}{a} \right)^{s_1} \right]^{s_2} + \left[\left(\frac{y}{b} \right)^{s_1} \right]^{s_2} + \left[\left(\frac{z}{c} \right)^{s_1} \right]^{s_2} = 1 \]

• Take absolute value of \(x, y \) & \(z \) to avoid exponentiating negative numbers
• If \(s_1 = s_2 \) then regular ellipsoid
• Has an implicit and a parametric form!
Superellipsoid Surfaces

- Normals defined by
 \[n_x(u,v) = \frac{1}{A} c(v,2-s_1) c(u,2-s_2) \]
 \[n_y(u,v) = \frac{1}{B} c(v,2-s_1) s(u,2-s_2) \]
 \[n_z(u,v) = \frac{1}{C} s(v,2-s_1) \]
- \(A\), \(B\) and \(C\) are scale factors of the \(X\), \(Y\) & \(Z\) coordinates
- \(s_1\) is the shape parameter for longitude lines
- \(s_2\) is the shape parameter for latitude lines

Superellipsoid Inside-Outside Function

\[F(x, y, z) = \left(\frac{x}{r_x} \right)^{2/s_2} + \left(\frac{y}{r_y} \right)^{2/s_2} + \left(\frac{z}{r_z} \right)^{2/s_2} - 1 \]

CSG with Superellipsoids

Blobby Objects

- Do not maintain shape, topology
 - Water drops
 - Molecules
 - Force fields
- But can maintain other properties, like volume
Gaussian Bumps

- Model object as a sum of Gaussian bumps/blobs
 \[f(x,y,z) = \sum b_i e^{-x_i^2} - T = 0 \]
- Where \(r_i^2 = x_i^2 + y_i^2 + z_i^2 \) and \(T \) is a threshold.

Metaballs (Blinn Blobbies)

Ray-traced Metaballs

Implicit Modeling System

- Combine “primitives”
 - Points, lines, planes, polygons, cylinders, ellipsoids
- Calculate field around primitives
- View iso-surface of implicit function

Sweep Representations

- An alternative way to represent a 3D object
- Idea
 - Given a primitive (e.g. polygon, sphere)
 - And a sweep (e.g. vector, curve...)
 - Define solid as space swept out by primitive

Implicit Modeling System

Can apply blends and warps
Sweep Representations

• Issues:
 – How to generate resulting surface?
 – What about self-intersections?
 – How to define intersection?

Approximate Representations

• Idea: discretize the world!
• Surface Models
 – Mesh, facet and polygon representations
• Volume Models
 – spatial enumeration
 – voxelization

Examples

• From exact to facets....

Boundary Representation
Solid Modeling

• The de facto standard for CAD since ~1987
 – BReps integrated into CAGD surfaces + analytic surfaces + boolean modeling
• Models are defined by their boundaries
• Topological and geometric integrity constraints are enforced for the boundaries
 – Faces meet at shared edges, vertices are shared, etc.

Let’s Start Simple:
Polyhedral Solid Modeling

• Definition
 – Solid bounded by polygons whose edges are each a member of an even number of polygons
 – A 2-manifold: edges members of 2 polygons

Properties of 2-Manifolds

• For any point on the boundary, its neighborhood is a topological 2D disk
• If not a 2-manifold, neighborhood not a disk
Euler’s Formula

• For simple polyhedron (no holes):
 \#Vertices - \#Edges + \#Faces = 2
• If formula is true the surface is closed

![Euler's Formula Examples](image)

Euler’s Formula (Generalized)

\#Vertices - \#Edges + \#Faces - \#Holes_in_faces = 2 (#Components – Genus)

• Genus is the # holes through the object
• Euler Operators have been the basis of several modeling systems (Mantyla et al.)

![Euler’s Formula Generalized](image)

Euler Operators

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Make a shell and a hole</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEKL</td>
<td>Make an edge and kill a loop</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop L → H, Shell S → C

Steps to Creating a Polyhedral Solid Modeler

• Representation
 – Points, Lines/Edges, Polygons
• Modeling
 – Generalization of 3D clipping to non-convex polyhedra, enables implementation of booleans

State of the Art: BRep Solid Modeling

• … but much more than polyhedra
• Two main (commercial) alternatives
 – All NURBS, all the time
 • Pro/E, SDRC, …
 – Analytic surfaces + parametric surfaces + NURBS + …, all stitched together at edges
 • Parasolid, ACIS, …

Issues in Boundary Representation Solid Modeling

• Very complex data structures
 – NURBS-based winged-edges, etc
• Complex algorithms
 – manipulation, booleans, collision detection
• Robustness
• Integrity
• Translation
• Features
• Constraints and Parametrics
Other Issues: Non-Manifold Solids

• There are cases where you may need to model entities that are not entirely 3D

Cell Decomposition

• Set of primitive cells
• Parameterized
• Often curved
• Compose complex objects by gluing cells together
• Used in finite-element analysis

Spatial Occupancy Enumeration

• Brute force
 – A grid
• Pixels
 – Picture elements
• Volumes
 – Volume elements
• Quadtrees
 – 2D adaptive representation
• Octrees
 – 3D adaptive representation
 – Extension of quadtrees

Brute Force Spatial Occupancy Enumeration

• Impose a 2D/3D grid
 – Like graph paper or sugar cubes
• Identify occupied cells
• Problems
 – High fidelity requires many cells
 – “Modified”
 – Partial occupancy

Distance Volume

• Store signed distance to surface at each voxel

Offset Surfaces from Distance Volumes

• Narrow-band representation

Iso-surface at value 0 approximates the original surface.
Quadtree

- Hierarchically represent spatial occupancy
- Tree with four regions
 - NE, NW, SE, SW
 - "dark" if occupied

Octree

- 8 octants 3D space
 - Left, Right, Up, Down, Front, Back

Boolean Operations on Octrees

$S \cup T$, $S \cap T$

Adaptive Distance Fields

- Quadtrees/Octrees that store distances

Applications for Spatial Occupancy Enumeration

- Many different applications
 - GIS
 - Medical
 - Engineering Simulation
 - Volume Rendering
 - Video Gaming
 - Approximating real-world data
 - ...
Issues with Spatial Occupancy Enumeration

- Approximate
 - Kind of like faceting a surface, discretizing 3D space
 - Operationally, the combinatorics (as opposed to the numerics) can be challenging
 - Not as good for applications wanting exact computation (e.g. tool path programming)

Binary Space Partition Trees (BSP Trees)

- Recursively divide space into subspaces
- Arbitrary orientation and position of planes
- Homogeneous regions are leaves called in/out cells

Generated by Termite Agents Simulation

Statistical Representations

- Store density (material vs. void)
- Statistical description of geometry
- Goal – describe the porosity without storing the geometry information

Application: Biological Models

- Bone tissue
- MRI data
- Other biological data
- Solid modeling
Application: Surface Texture

Overview
- 3D solid model representations
 - Implicit models
 - Super/quadrics
 - Blobbies
 - Swept objects
 - Boundary representations
 - Spatial enumerations
 - Distance fields
 - Quadtrees/octrees
 - Stochastic models

Programming Assignment 4
- Implement parametric form of superellipsoids
- Iterate through u and v parameters
- Calculate point and normal for each (u,v) pair
- Only calculate one point at each of the poles
- Top and bottom rows should be a triangle fan with poles at center
- Other rows are quads that are broken into triangles
- Output mesh as Open Inventor

End