Overview

• 3D solid model representations
 – Implicit models
 – Super/quadrics
 – Blobs
 – Swept objects
 – Boundary representations
 – Spatial enumerations
 – Distance fields
 – Quadtrees/octrees
 – Stochastic models

Implicit Solid Modeling

• Idea:
 – Represents solid as the set of points where an implicit global function takes on certain values
 • Usually
 • $F(x,y,z) < 0$, points inside of object
 • $F(x,y,z) = 0$, points on object’s surface
 • $F(x,y,z) > 0$, points outside of object
 – Primitive solids are combined using CSG
 – Composition operations are implemented by functionals which provide an implicit function for the resulting solid

Quadratic Surfaces

• Sphere
 $$x^2 + y^2 + z^2 = r^2$$

• Ellipsoid
 $$\left(\frac{x}{a}\right)^{2s_1} + \left(\frac{y}{b}\right)^{2s_2} + \left(\frac{z}{c}\right)^{2s_2} = 1$$

• Torus
 $$\left(\sqrt{x^2 + y^2} - \frac{d}{2}\right)^{2s_2} + \left(\frac{z}{e}\right)^{2s_3} = 1$$

• General form
 $$a_1\cdot x^2 + b_1\cdot y^2 + c_1\cdot z^2 + 2f_1\cdot yz + 2g_1\cdot xz + 2h_1\cdot xy + 2p_1\cdot x + 2q_1\cdot y + 2r_1\cdot z + d_1 = 0$$

Superellipsoid Surfaces

• Generalization of ellipsoid
• Control parameters s_1 and s_2
 $$\left(\frac{x}{a}\right)^{2s_1} + \left(\frac{y}{b}\right)^{2s_2} + \left(\frac{z}{c}\right)^{2s_2} = 1$$
 • If $s_1 = s_2 = 1$ then regular ellipsoid
 • Has an implicit and a parametric form!

The general superellipsoid has a parametric representation in terms of surface parameters $-\infty < u, v < \infty$:

$$x(u,v) = Ac(v,s_1)c(u,s_2)$$
$$y(u,v) = Bc(v,s_1)c(u,s_2)$$
$$z(u,v) = Cs(v,s_1)$$

where the auxiliary functions are:

$$c(\omega, m) = \text{sgn}(\omega) \cos(m\omega)$$
$$s(\omega, m) = \text{sgn}(\omega) \sin(m\omega)$$

and the sign function $\text{sgn}(x)$ is:

$$\text{sgn}(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ +1, & x > 0 \end{cases}$$
Superellipsoid Surfaces

- Normals defined by
 \[n_x(u,v) = \frac{1}{A} c(v,2-s_1) c(u,2-s_2) \]
 \[n_y(u,v) = \frac{1}{B} c(v,2-s_1) s(u,2-s_2) \]
 \[n_z(u,v) = \frac{1}{C} s(v,2-s_1) \]
- A, B and C are scale factors of the X, Y & Z coordinates
- \(s_1 \) is the shape parameter for longitude lines
- \(s_2 \) is the shape parameter for latitude lines

CSG with Superquadrics

Blobby Objects

- Do not maintain shape, topology
 - Water drops
 - Molecules
 - Force fields
- But can maintain other properties, like volume

Gaussian Bumps

- Model object as a sum of Gaussian bumps/blobs
 \[f(x,y,z) = \sum \beta_i e^{-\rho r^2} - T = 0 \]
- Where \(r^2 = x^2 + y^2 + z^2 \) and \(T \) is a threshold.
Metaballs (Blinn Blobbies)

Ray-traced Metaballs

Implicit Modeling System
U. of Calgary

• Combine “primitives”
 – Points, lines, planes, polygons, cylinders, ellipsoids
• Calculate field around primitives
• View iso-surface of implicit function

Implicit Modeling System
U. of Calgary

Can apply blends and warps

Sweep Representations

• An alternative way to represent a 3D object
• Idea
 – Given a primitive (e.g. polygon, sphere)
 – And a sweep (e.g. vector, curve...)
 – Define solid as space swept out by primitive

Sweep Representations

• Issues:
 – How to generate resulting surface?
 – What about self-intersections?
 – How to define intersection?
Approximate Representations

• Idea: discretize the world!
• Surface Models
 – Mesh, facet and polygon representations
• Volume Models
 – spatial enumeration
 – voxelization

Examples

• From exact to facets....

Boundary Representation

Solid Modeling

• The de facto standard for CAD since ~1987
 – BReps integrated into CAGD surfaces + analytic surfaces + boolean modeling
• Models are defined by their boundaries
• Topological and geometric integrity constraints are enforced for the boundaries
 – Faces meet at shared edges, vertices are shared, etc.

Let’s Start Simple:

Polyhedral Solid Modeling

• Definition
 – Solid bounded by polygons whose edges are each a member of an even number of polygons
 – A 2-manifold: edges members of 2 polygons

Properties of 2-Manifolds

• For any point on the boundary, its neighborhood is a topological 2D disk
• If not a 2-manifold, neighborhood not a disk

Euler’s Formula

• For simple polyhedron (no holes):
 #Vertices - #Edges + #Faces = 2
• If formula is true the surface is closed
Euler’s Formula (Generalized)

\[\text{#Vertices} - \text{#Edges} + \text{#Faces} - \text{#Holes_in_faces} = 2 (\text{#Components} - \text{Genus}) \]

- Genus is the # holes through the object
- Euler Operators have been the basis of several modeling systems (Mantyla et al.)

Euler Operators

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td></td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td></td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Make a shell and a hole</td>
<td></td>
<td></td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEKL</td>
<td>Make an edge and kill a loop</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Loop } L \rightarrow H, \quad \text{Shell } S \rightarrow C \)

Steps to Creating a Polyhedral Solid Modeler

- Representation
 - Points, Lines/Edges, Polygons
- Modeling
 - Generalization of 3D clipping to non-convex polyhedra, enables implementation of booleans

State of the Art: BRep Solid Modeling

- ... but much more than polyhedra
- Two main (commercial) alternatives
 - All NURBS, all the time
 - Pro/E, SDRC, ...
 - Analytic surfaces + parametric surfaces + NURBS + ..., all stitched together at edges
 - Parasolid, ACIS, ...

Issues in Boundary Representation Solid Modeling

- Very complex data structures
 - NURBS-based winged-edges, etc
- Complex algorithms
 - manipulation, booleans, collision detection
- Robustness
- Integrity
- Translation
- Features
- Constraints and Parametrics

Other Issues: Non-Manifold Solids

- There are cases where you may need to model entities that are not entirely 3D
Cell Decomposition

- Set of primitive cells
- Parameterized
- Often curved
- Compose complex objects by gluing cells together
- Used in finite-element analysis

Spatial Occupancy Enumeration

- Brute force
 - A grid
- Pixels
 - Picture elements
- Voxels
 - Volume elements
- Quadtrees
 - 2D adaptive representation
- Octrees
 - 3D adaptive representation
 - Extension of quadtrees

Brute Force Spatial Occupancy Enumeration

- Impose a 2D/3D grid
 - Like graph paper or sugar cubes
- Identify occupied cells
- Problems
 - High fidelity requires many cells
- "Modified"
 - Partial occupancy

Distance Volume

- Store signed distance to surface at each voxel

Offset Surfaces from Distance Volumes

Quadtree

- Hierarchically represent spatial occupancy
- Tree with four regions
 - NE, NW, SE, SW
 - "dark" if occupied
Quadtree Data Structure

Octree

- 8 octants 3D space
 - Left, Right, Up, Down, Front, Back

Boolean Operations on Octrees

S U T
S ∩ T

Adaptive Distance Fields

- Quadtrees/Octrees that store distances

Applications for Spatial Occupancy Enumeration

- Many different applications
 - GIS
 - Medical
 - Engineering Simulation
 - Volume Rendering
 - Video Gaming
 - Approximating real-world data
 - ...

Issues with Spatial Occupancy Enumeration

- Approximate
 - Kind of like faceting a surface, discretizing 3D space
 - Operationally, the combinatorics (as opposed to the numerics) can be challenging
 - Not as good for applications wanting exact computation (e.g. tool path programming)
Binary Space Partition Trees (BSP Trees)

- Recursively divide space into subspaces
- Arbitrary orientation and position of planes
- Homogeneous regions are leaves called in/out cells

Foley/VanDam, 1990/1994

- Store density (material vs. void)
- Statistical description of geometry
- Goal – describe the porosity without storing the geometry information

Statistical Representations

Stochastic Geometry

- Need some way of converting a solid into some representative statistical form
- From each material voxel, calculate the distance to the nearest voxel that is not material
- Repeat for void voxels
- Store distributions:
 - one for empty space
 - one for material
 - density value

Distance vs. Probability

Application: Biological Models

- Bone tissue
- MRI data
- Other biological data
- Solid modeling

MRI scan of left shoulder
Bone matrix from scanned data

Application: Surface Texture

Application: Surface Texture
Programming Assignment 3

- Process command line arguments
- Read in control points from file
- Double loop through u & v parameters
- For each (u, v) pair compute 3D point on Bezier patch
- Once you've computed the 3D points, define the triangles that connect them
- If shading, compute exact normals at each mesh vertex
- Output all data as Open Inventor

End