CS 536
Computer Graphics

Solid Modeling Primitives

Week 7, Lecture 14

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Overview

• 3D solid model representations
 – Implicit models
 – Super/quadrics
 – Blobbies
 – Swept objects
 – Boundary representations
 – Spatial enumerations
 – Distance fields
 – Quadtrees/octrees
 – Stochastic models
Implicit Solid Modeling

- Idea:
 - Represents solid as the set of points where an implicit global function takes on certain values
 - Usually
 - $F(x,y,z) < 0$, points inside of object
 - $F(x,y,z) = 0$, points on object’s surface
 - $F(x,y,z) > 0$, points outside of object
 - Primitive solids are combined using CSG
 - Composition operations are implemented by functionals which provide an implicit function for the resulting solid

From M.Ganter, D. Storti, G. Turkiyyah @ UW
Quadratic Surfaces

- Sphere
 \[x^2 + y^2 + z^2 = r^2 \]
- Ellipsoid
 \[\left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2 + \left(\frac{z}{r_z} \right)^2 = 1 \]
- Torus
 \[\left[r - \sqrt{\left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2} \right]^2 + \left(\frac{z}{r_z} \right)^2 = 1 \]
- General form
 \[a \cdot x^2 + b \cdot y^2 + c \cdot z^2 + 2f \cdot yz + 2g \cdot xz + 2h \cdot xy + 2p \cdot x + 2q \cdot y + 2r \cdot z + d = 0 \]
Superellipsoid Surfaces

- Generalization of ellipsoid
- Control parameters \(s_1 \) and \(s_2 \)

\[
\left[\left(\frac{x}{r_x} \right)^{2/s_2} + \left(\frac{y}{r_y} \right)^{2/s_2} \right]^{s_2/s_1} + \left(\frac{z}{r_z} \right)^{2/s_1} = 1
\]

- If \(s_1 = s_2 = 1 \) then regular ellipsoid
- Has an implicit and a parametric form!
Superellipsoid Surfaces

The general superellipsoid has a *parametric representation* in terms of surface parameters \(-\pi/2 \leq v \leq \pi/2, -\pi \leq u \leq \pi\)

\[x(u, v) = Ac(v, s_1)c(u, s_2) \]
\[y(u, v) = Bc(v, s_1)s(u, s_2) \]
\[z(u, v) = Cs(v, s_1) \]

where the auxiliary functions are

\[c(\omega, m) = \text{sgn}(\cos \omega)|\cos \omega|^m \]
\[s(\omega, m) = \text{sgn}(\sin \omega)|\sin \omega|^m \]

and the *sign function* \(\text{sgn}(x)\) is

\[\text{sgn}(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ +1, & x > 0. \end{cases} \]
Superellipsoid Surfaces

- Normals defined by

\[n_x(u, v) = \left(\frac{1}{A}\right)c(v, 2 - s_1)c(u, 2 - s_2) \]
\[n_y(u, v) = \left(\frac{1}{B}\right)c(v, 2 - s_1)s(u, 2 - s_2) \]
\[n_z(u, v) = \left(\frac{1}{C}\right)s(v, 2 - s_1) \]

- A, B and C are scale factors of the X, Y & Z coordinates
- \(s_1 \) is the shape parameter for longitude lines
- \(s_2 \) is the shape parameter for latitude lines
Superellipsoid Surfaces

\[
\begin{array}{cccc}
S_2 & 0.2 & 0.8 & 1.0 & 2.0 \\
0.2 & & & & \\
0.8 & & & & \\
S_1 & & & & \\
1.0 & & & & \\
2.0 & & & & \\
\end{array}
\]
CSG with Superquadrics
CSG with Superellipsoids
Blobby Objects

• Do not maintain shape, topology
 – Water drops
 – Molecules
 – Force fields

• But can maintain other properties, like volume
Gaussian Bumps

• Model object as a sum of Gaussian bumps/blobs

\[f(x, y, z) = \sum_{k} b_k e^{-a_k r_k^2} - T = 0 \]

• Where \(r_k^2 = x_k^2 + y_k^2 + z_k^2 \) and \(T \) is a threshold.
Metaballs (Blinn Blobbies)
Ray-traced Metaballs
Implicit Modeling System
U. of Calgary

- Combine “primitives”
 - Points, lines, planes, polygons, cylinders, ellipsoids
- Calculate field around primitives
- View Iso-surface of implicit function
Implicit Modeling System
U. of Calgary

The Blob Tree

Can apply blends and warps
Sweep Representations

- An alternative way to represent a 3D object
- Idea
 - Given a primitive (e.g. polygon, sphere)
 - And a sweep (e.g. vector, curve...)
 - Define solid as space swept out by primitive
Sweep Representations

• Issues:
 – How to generate resulting surface?
 – What about self-intersections?
 – How to define intersection?
Approximate Representations

• Idea: discretize the world!
• Surface Models
 – Mesh, facet and polygon representations
• Volume Models
 – spatial enumeration
 – voxelization
Examples

• From exact to facets....

Pics/Math courtesy of Dave Mount @ UMD-CP
Boundary Representation
Solid Modeling

• The de facto standard for CAD since ~1987
 – BReps integrated into CAGD surfaces + analytic surfaces + boolean modeling
• Models are defined by their boundaries
• Topological and geometric integrity constraints are enforced for the boundaries
 – Faces meet at shared edges, vertices are shared, etc.
Let’s Start Simple: Polyhedral Solid Modeling

• Definition
 – Solid bounded by polygons whose edges are each a member of an even number of polygons
 – A 2-manifold: edges members of 2 polygons
Properties of 2-Manifolds

- For any point on the boundary, its neighborhood is a topological 2D disk
- If not a 2-manifold, neighborhood not a disk

(a)
(b)
(c)
Euler’s Formula

- For simple polyhedron (no holes):
 \(#\text{Vertices} - \#\text{Edges} + \#\text{Faces} = 2\)
- If formula is true the surface is closed
Euler’s Formula (Generalized)

\#Vertices - \#Edges + \#Faces - \#Holes_in_faces = 2 (\#Components – Genus)

- Genus is the \# holes through the object
- Euler Operators have been the basis of several modeling systems (Mantyla et al.)

\[V - E + F - H = 2(C - G) \]

24 36 15 3 1 1
Euler Operators

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Make a shell and a hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>MEKL</td>
<td>Make an edge and kill a loop</td>
<td>+1</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEV</td>
<td>Kill an edge and a vertex</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KFE</td>
<td>Kill a face and an edge</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSFV</td>
<td>Kill a shell, a face and a vertex</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSG</td>
<td>Kill a shell and a hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>KEML</td>
<td>Kill an edge and make a loop</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Steps to Creating a Polyhedral Solid Modeler

• Representation
 – Points, Lines/Edges, Polygons

• Modeling
 – Generalization of 3D clipping to non-convex polyhedra, enables implementation of booleans
State of the Art: BRep Solid Modeling

• ... but much more than polyhedra

• Two main (commercial) alternatives
 – All NURBS, all the time
 • Pro/E, SDRC, ...
 – Analytic surfaces + parametric surfaces + NURBS + all stitched together at edges
 • Parasolid, ACIS, ...
Issues in Boundary Representation Solid Modeling

- Very complex data structures
 - NURBS-based winged-edges, etc
- Complex algorithms
 - manipulation, booleans, collision detection
- Robustness
- Integrity
- Translation
- Features
- Constraints and Parametrics
Other Issues: Non-Manifold Solids

- There are cases where you may need to model entities that are not entirely 3D

![Diagram of non-manifold solids](image1.png)
Cell Decomposition

- Set of primitive cells
- Parameterized
- Often curved
- Compose complex objects by gluing cells together
- Used in finite-element analysis

Foley/VanDam, 1990/1994
Spatial Occupancy Enumeration

- **Brute force**
 - A grid

- **Pixels**
 - Picture elements

- **Voxels**
 - Volume elements

- **Quadtrees**
 - 2D adaptive representation

- **Octrees**
 - 3D adaptive representation
 - Extension of quadtrees
Brute Force Spatial Occupancy Enumeration

- Impose a 2D/3D grid
 - Like graph paper or sugar cubes
- Identify occupied cells
- Problems
 - High fidelity requires many cells
- “Modified”
 - Partial occupancy
Distance Volume

• Store signed distance to surface at each voxel

Iso-surface at value 0 approximates the original surface.

Narrow-band representation
Offset Surfaces from Distance Volumes
Quadtree

- Hierarchically represent spatial occupancy
- Tree with four regions
 - NE, NW, SE, SW
 - “dark” if occupied
Quadtree Data Structure

F = full P = partially full E = empty

Quadrant numbering

Foley/VanDam, 1990/1994
Octree

- 8 octants 3D space
 - Left, Right, Up, Down, Front, Back
Boolean Operations on Octrees

\[S \cup T \quad S \cap T \]
Adaptive Distance Fields

- Quadtrees/Octrees that store distances
Applications for Spatial Occupancy Enumeration

- Many different applications
 - GIS
 - Medical
 - Engineering Simulation
 - Volume Rendering
 - Video Gaming
 - Approximating real-world data
 -
Issues with Spatial Occupancy Enumeration

• Approximate
 – Kind of like faceting a surface, discretizing 3D space
 – Operationally, the combinatorics (as opposed to the numerics) can be challenging
 – Not as good for applications wanting exact computation (e.g. tool path programming)
Binary Space Partition Trees (BSP Trees)

- Recursively divide space into subspaces
- Arbitrary orientation and position of planes
- Homogeneous regions are leafs called in/out cells

Foley/VanDam, 1990/1994
Statistical Representations

- Store density (material vs. void)
- Statistical description of geometry
- Goal – describe the porosity without storing the geometry information
Stochastic Geometry

- Need some way of converting a solid into some representative statistical form
- From each material voxel, calculate the distance to the nearest voxel that is not material
- Repeat for void voxels
- Store distributions:
 - one for empty space
 - one for material
 - density value

![Distance vs. Probability](image.png)
Application: Biological Models

- Bone tissue
- MRI data
- Other biological data
- Solid modeling

MRI scan of left shoulder

Bone matrix from scanned data
Application: Surface Texture
Application: Surface Texture
Application: Surface Texture

1 distribution
20 spheres
Programming Assignment 3

• Process command line arguments
• Read in control points from file
• Double loop through u & v parameters
• For each (u,v) pair compute 3D point on Bezier patch
• Once you’ve computed the 3D points, define the triangles that connect them
• If shading, compute exact normals at each mesh vertex
• Output all data as Open Inventor
End