Overview

• 3D solid model representations
 – Implicit models
 – Super/quadrics
 – Blobbies
 – Swept objects
 – Boundary representations
 – Spatial enumerations
 – Distance fields
 – Quadtrees/octrees
 – Stochastic models
Implicit Solid Modeling

• Idea:
 – Represents solid as the set of points where an implicit global function takes on certain values
 • Usually
 • $F(x,y,z) < 0$, points inside of object
 • $F(x,y,z) = 0$, points on object’s surface
 • $F(x,y,z) > 0$, points outside of object
 – Primitive solids are combined using CSG
 – Composition operations are implemented by functionals which provide an implicit function for the resulting solid

From M.Ganter, D. Storti, G. Turkiyyah @ UW
Quadratic Surfaces

• Sphere
 \[x^2 + y^2 + z^2 = r^2 \]

• Ellipsoid
 \[\left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2 + \left(\frac{z}{r_z} \right)^2 = 1 \]

• Torus
 \[\left[r - \sqrt{\left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2} \right]^2 + \left(\frac{z}{r_z} \right)^2 = 1 \]

• General form
 \[a \cdot x^2 + b \cdot y^2 + c \cdot z^2 + 2f \cdot yz + 2g \cdot xz + 2h \cdot xy + 2p \cdot x + 2q \cdot y + 2r \cdot z + d = 0 \]
Superellipsoid Surfaces

- Generalization of ellipsoid
- Shape parameters s_1 and s_2
 \[
 \left[\left(\frac{x}{r_x}\right)^{2/s_2} + \left(\frac{y}{r_y}\right)^{2/s_2}\right]^{s_2/s_1} + \left(\frac{z}{r_z}\right)^{2/s_1} = 1
 \]
- Take absolute value of x, y & z to avoid exponentiating negative numbers
- If $s_1 = s_2 = 1$ then regular ellipsoid
- Has an implicit and a parametric form!
The general superellipsoid has a **parametric representation** in terms of surface parameters $-\pi/2 \leq v \leq \pi/2$, $-\pi \leq u \leq \pi$

\[
x(u, v) = Ac(v, s_1)c(u, s_2)
\]
\[
y(u, v) = Bc(v, s_1)s(u, s_2)
\]
\[
z(u, v) = Cs(v, s_1)
\]

where the auxiliary functions are

\[
c(\omega, m) = \text{sgn}(\cos \omega)|\cos \omega|^m
\]
\[
s(\omega, m) = \text{sgn}(\sin \omega)|\sin \omega|^m
\]

and the **sign function** $\text{sgn}(x)$ is

\[
\text{sgn}(x) = \begin{cases}
-1, & x < 0 \\
0, & x = 0 \\
+1, & x > 0.
\end{cases}
\]
Superellipsoid Surfaces

- Normals defined by

\[n_x(u, v) = \frac{1}{A}c(v, 2 - s_1)c(u, 2 - s_2) \]
\[n_y(u, v) = \frac{1}{B}c(v, 2 - s_1)s(u, 2 - s_2) \]
\[n_z(u, v) = \frac{1}{C}s(v, 2 - s_1) \]

- \(A, B \) and \(C \) are scale factors of the X, Y & Z coordinates
- \(s_1 \) is the shape parameter for longitude lines
- \(s_2 \) is the shape parameter for latitude lines
Superellipsoid Inside-Outside Function

\[F(x, y, z) = \left[\left(\frac{x}{r_x} \right)^{2/s_2} + \left(\frac{y}{r_y} \right)^{2/s_2} \right]^{s_2/s_1} + \left(\frac{z}{r_z} \right)^{2/s_1} - 1 \]
Superellipsoidal Surfaces
CSG with Superquadrics
CSG with Superellipsoids
Blobby Objects

• Do not maintain shape, topology
 – Water drops
 – Molecules
 – Force fields

• But can maintain other properties, like volume
Gaussian Bumps

• Model object as a sum of Gaussian bumps/blobs

\[f(x, y, z) = \sum_{k} b_k e^{-a_k r_k^2} - T = 0 \]

• Where \(r_k^2 = x_k^2 + y_k^2 + z_k^2 \) and \(T \) is a threshold.
Metaballs (Blinn Blobbies)
Ray-traced Metaballs
Implicit Modeling System
U. of Calgary

- Combine “primitives”
 - Points, lines, planes, polygons, cylinders, ellipsoids
- Calculate field around primitives
- View Iso-surface of implicit function
Implicit Modeling System
U. of Calgary

The Blob Tree

Can apply blends and warps
Sweep Representations

• An alternative way to represent a 3D object

• Idea
 – Given a primitive (e.g. polygon, sphere)
 – And a sweep (e.g. vector, curve…)
 – Define solid as space swept out by primitive
Sweep Representations

• Issues:
 – How to generate resulting surface?
 – What about self-intersections?
 – How to define intersection?
Approximate Representations

• Idea: discretize the world!
• Surface Models
 – Mesh, facet and polygon representations
• Volume Models
 – spatial enumeration
 – voxelization
Examples

• From exact to facets....
Boundary Representation
Solid Modeling

• The de facto standard for CAD since ~1987
 – BReps integrated into CAGD surfaces + analytic surfaces + boolean modeling
• Models are defined by their boundaries
• Topological and geometric integrity constraints are enforced for the boundaries
 – Faces meet at shared edges, vertices are shared, etc.
Let’s Start Simple: Polyhedral Solid Modeling

• Definition
 – Solid bounded by polygons whose edges are each a member of an even number of polygons
 – A 2-manifold: edges members of 2 polygons
Properties of 2-Manifolds

- For any point on the boundary, its neighborhood is a topological 2D disk.
- If not a 2-manifold, neighborhood not a disk.
Euler’s Formula

• For simple polyhedron (no holes):
 $\#\text{Vertices} - \#\text{Edges} + \#\text{Faces} = 2$

• If formula is true the surface is closed

![Diagrams showing different polyhedra with vertex, edge, and face counts.](image)
Euler’s Formula (Generalized)

#Vertices - #Edges + #Faces - #Holes_in_faces = 2 (#Components – Genus)

- Genus is the # holes through the object
- Euler Operators have been the basis of several modeling systems (Mantyla et al.)

\[V - E + F - H = 2(C - G) \]

<table>
<thead>
<tr>
<th>V</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>36</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Euler Operators

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Make a shell and a hole</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEKL</td>
<td>Make an edge and kill a loop</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEV</td>
<td>Kill an edge and a vertex</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KFE</td>
<td>Kill a face and an edge</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSFV</td>
<td>Kill a shell, a face and a vertex</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>KSG</td>
<td>Kill a shell and a hole</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>KEML</td>
<td>Kill an edge and make a loop</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop $L \rightarrow H$, Shell $S \rightarrow C$
Steps to Creating a Polyhedral Solid Modeler

• Representation
 – Points, Lines/Edges, Polygons

• Modeling
 – Generalization of 3D clipping to non-convex polyhedra, enables implementation of booleans
State of the Art: BRep Solid Modeling

- … but much more than polyhedra
- Two main (commercial) alternatives
 - All NURBS, all the time
 - Pro/E, SDRC, …
 - Analytic surfaces + parametric surfaces + NURBS + …. all stitched together at edges
 - Parasolid, ACIS, …
Issues in Boundary Representation Solid Modeling

• Very complex data structures
 – NURBS-based winged-edges, etc
• Complex algorithms
 – manipulation, booleans, collision detection
• Robustness
• Integrity
• Translation
• Features
• Constraints and Parametrics
Other Issues: Non-Manifold Solids

- There are cases where you may need to model entities that are not entirely 3D
Cell Decomposition

• Set of primitive cells
• Parameterized
• Often curved
• Compose complex objects by gluing cells together
• Used in finite-element analysis
Spatial Occupancy Enumeration

- Brute force
 - A grid
- Pixels
 - Picture elements
- Voxels
 - Volume elements
- Quadtrees
 - 2D adaptive representation
- Octrees
 - 3D adaptive representation
 - Extension of quadtrees
Brute Force Spatial Occupancy Enumeration

- Impose a 2D/3D grid
 - Like graph paper or sugar cubes
- Identify occupied cells
- Problems
 - High fidelity requires many cells
- “Modified”
 - Partial occupancy

Foley/VanDam, 1990/1994
Distance Volume

• Store signed distance to surface at each voxel

Iso-surface at value 0 approximates the original surface.

Narrow-band representation
Offset Surfaces from Distance Volumes
Quadtree

• Hierarchically represent spatial occupancy

• Tree with four regions
 – NE, NW, SE, SW
 – “dark” if occupied
Quadtree Data Structure

F = full P = partially full E = empty
Octree

• 8 octants 3D space
 – Left, Right, Up,
 Down, Front, Back

Foley/VanDam, 1990/1994
Boolean Operations on Octrees

\[S \cup T \]

\[S \cap T \]

Foley/VanDam, 1990/1994
Adaptive Distance Fields

- Quadtrees/Octrees that store distances
Applications for Spatial Occupancy Enumeration

• Many different applications
 – GIS
 – Medical
 – Engineering Simulation
 – Volume Rendering
 – Video Gaming
 – Approximating real-world data
 – ….
Issues with Spatial Occupancy Enumeration

• Approximate
 – Kind of like faceting a surface, discretizing 3D space
 – Operationally, the combinatorics (as opposed to the numerics) can be challenging
 – Not as good for applications wanting exact computation (e.g. tool path programming)
Binary Space Partition Trees (BSP Trees)

- Recursively divide space into subspaces
- Arbitrary orientation and position of planes
- Homogeneous regions are leafs called in/out cells
Statistical Representations

- Store density (material vs. void)
- Statistical description of geometry
- Goal – describe the porosity without storing the geometry information
Stochastic Geometry

- Need some way of converting a solid into some representative statistical form
- From each material voxel, calculate the distance to the nearest voxel that is not material
- Repeat for void voxels
- Store distributions:
 - one for empty space
 - one for material
 - density value
Application: Biological Models

- Bone tissue
- MRI data
- Other biological data
- Solid modeling

MRI scan of left shoulder

Bone matrix from scanned data
Application: Surface Texture

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Application: Surface Texture
Application: Surface Texture

1 distribution
20 spheres
Overview

• 3D solid model representations
 – Implicit models
 – Super/quadrics
 – Blobbies
 – Swept objects
 – Boundary representations
 – Spatial enumerations
 – Distance fields
 – Quadtrees/octrees
 – Stochastic models
Programming Assignment 4

• Implement parametric form of superellipsoids
• Iterate through u and v parameters
• Calculate point and normal for each (u,v) pair
• Only calculate one point at each of the poles
• Top and bottom rows should be a triangle fan with poles at center
• Other rows are quads that are broken into triangles
• Output mesh as Open Inventor
End