Hierarchical Models

Week 9, Lecture 19

David Breen
Department of Computer Science
Drexel University
Objectives

• Examine the limitations of linear modeling
 - Symbols and instances

• Introduce hierarchical models
 - Articulated models
 - Robots

• Introduce Tree and DAG models
Instance Transformation

• Start with a prototype object (a symbol)
• Each appearance of the object in the model is an instance
 - Must scale, orient, position
 - Defines instance transformation
Symbol-Instance Table

Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Scale</th>
<th>Rotate</th>
<th>Translate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s_x, s_y, s_z</td>
<td>θ_x, θ_y, θ_z</td>
<td>d_x, d_y, d_z</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relationships in Car Model

- Symbol-instance table does not show relationships between parts of model
- Consider model of car
 - Chassis + 4 identical wheels
 - Two symbols
- Rate of forward motion determined by rotational speed of wheels
Structure Through Function

Calls

car(speed)
{
 chassis()
 wheel(right_front);
 wheel(left_front);
 wheel(right_rear);
 wheel(left_rear);
}

• Fails to show relationships well
• Look at problem using a graph
Graphs

• Set of *nodes* and *edges* (*links*)
• Edge connects a pair of nodes
 - Directed or undirected
• *Cycle*: directed path that is a loop
Tree

- Graph in which each node (except the root) has exactly one parent node
 - May have multiple children
 - Leaf or terminal node: no children

```
  root node

  leaf node
```
Tree Model of Car

- Chassis
 - Right-front wheel
 - Left-front wheel
 - Right-rear wheel
 - Left-rear wheel
• If we use the fact that all the wheels are identical, we get a *directed acyclic graph*
 - Not much different than dealing with a tree
Modeling with Trees

• Must decide what information to place in nodes and what to put in edges

• Nodes
 - What to draw
 - Pointers to children

• Edges
 - May have information on incremental changes to transformation matrices (can also store in nodes)
Robot Arm

robot arm

parts in their own coordinate systems
Articulated Models

- Robot arm is an example of an *articulated model*
 - Parts connected at joints
 - Can specify state of model by giving all joint angles
Relationships in Robot Arm

• Base rotates independently
 - Single angle determines position

• Lower arm attached to base
 - Its position depends on rotation of base
 - Must also translate relative to base and rotate about connecting joint

• Upper arm attached to lower arm
 - Its position depends on both base and lower arm
 - Must translate relative to lower arm and rotate about joint connecting to lower arm
Required Matrices

- Rotation of base: R_b
 - Apply $M = R_b$ to base
- Translate lower arm relative to base: T_{lu}
- Rotate lower arm around joint: R_{lu}
 - Apply $M = R_b \ T_{lu} \ R_{lu}$ to lower arm
- Translate upper arm relative to upper arm: T_{uu}
- Rotate upper arm around joint: R_{uu}
 - Apply $M = R_b \ T_{lu} \ R_{lu} \ T_{uu} \ R_{uu}$ to upper arm
mat4 ctm; // current transformation matrix

robot_arm()
{
 ctm = RotateY(theta);
 base();
 ctm *= Translate(0.0, h1, 0.0);
 ctm *= RotateZ(phi);
 lower_arm();
 ctm *= Translate(0.0, h2, 0.0);
 ctm *= RotateZ(psi);
 upper_arm();
}
OpenGL Code for Robot

- At each level of hierarchy, calculate \(\text{ctm} \) matrix in application.
- Send matrix to shaders
- Apply \(\text{ctm} \) matrix in shader
- Draw geometry for one level of hierarchy
Tree Model of Robot

- Note code shows relationships between parts of model
 - Can change “look” of parts easily without altering relationships
- Simple example of tree model
- Want a general node structure for nodes
Possible Node Structure

- **Draw**
- **M**
- **Child**

- Code for drawing part or pointer to drawing function
- Linked list of pointers to children
- Matrix relating node to parent
Generalizations

• Need to deal with multiple children
 - How do we represent a more general tree?
 - How do we traverse such a data structure?

• Animation
 - How to use dynamically?
 - Can we create and delete nodes during execution?
Objectives

• Build a tree-structured model of a humanoid figure
• Examine various traversal strategies
• Build a generalized tree-model structure that is independent of the particular model
Humanoid Figure
Building the Model

- Can build a simple implementation using quadrics: ellipsoids and cylinders
- Access parts through functions
 - torso()
 - left_upper_arm()
- Matrices describe position of node with respect to its parent
 - M_{lla} positions left lower arm with respect to left upper arm
Tree with Matrices

\[
\begin{align*}
M & \quad \text{Torso} \\
M_h & \quad \text{Head} \\
M_{lua} & \quad \text{Left-upper arm} \\
M_{rua} & \quad \text{Right-upper arm} \\
M_{lul} & \quad \text{Left-upper leg} \\
M_{rul} & \quad \text{Right-upper leg} \\
M_{lla} & \quad \text{Left-lower arm} \\
M_{rla} & \quad \text{Right-lower arm} \\
M_{lll} & \quad \text{Left-lower leg} \\
M_{rll} & \quad \text{Right-lower leg}
\end{align*}
\]
Display and Traversal

• The position of the figure is determined by 11 joint angles (two for the head and one for each other part)

• Display of the tree requires a graph traversal

 - Visit each node once
 - Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation
Transformation Matrices

• There are 10 relevant matrices
 - M positions and orients entire figure through the torso which is the root node
 - M_h positions head with respect to torso
 - M_{lua}, M_{rua}, M_{lul}, M_{rul} position arms and legs with respect to torso
 - M_{lla}, M_{rla}, M_{lll}, M_{rll} position lower parts of limbs with respect to corresponding upper limbs
Stack-based Traversal

• Set model-view matrix to M and draw torso
• Set model-view matrix to MM_h and draw head
• For left-upper arm need MM_{lua} and so on
• Rather than recomputing MM_{lua} from scratch or using an inverse matrix, we can use the matrix stack to store M and other matrices as we traverse the tree
Traversing Code

```c
figure() {
    PushMatrix()
    torso();
    Rotate (...);
    head();
    PopMatrix();
    PushMatrix();
    Translate(...);
    Rotate(...);
    left_upper_arm();
    PopMatrix();
    PushMatrix();
    save present current xform matrix
    update ctm for head
    recover original ctm
    save it again
    update ctm for left upper arm
    recover and save original ctm again
    rest of code
}```
Analysis

• The code describes a particular tree and a particular traversal strategy
  - Can we develop a more general approach?
• Note that the sample code does not include state changes, such as changes to colors
  - May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code
General Tree Data Structure

• Need a data structure to represent tree and an algorithm to traverse the tree
• We will use a left-child right sibling structure
  - Uses linked lists
  - Each node in data structure is two pointers
  - Left: linked list of children
  - Right: next node (i.e. siblings)
Left-Child Right-Sibling Tree
Tree node Structure

• At each node we need to store
  - Pointer to sibling
  - Pointer to child
  - Pointer to a function that draws the object represented by the node
  - Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
    • Represents changes going from parent to node
    • In OpenGL this matrix is a 1D array storing matrix by columns
C Definition of treenode

typedef struct treenode
{
    mat4 m;
    void (*f)();
    struct treenode *sibling;
    struct treenode *child;
} treenode;
treenode torso_node, head_node, lua_node, ... ;

torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = &head_node;

head_node.m = translate(0.0, TORSO_HEIGHT + 0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[1])*RotateY(theta[2]);
hphead_node.f = head;
head_node.sibling = &lua_node;
head_node.child = NULL;
Notes

• The position of figure is determined by 11 joint angles stored in $\theta[11]$
• Animate by changing the angles and redisplaying
• We form the required matrices using **Rotate** and **Translate**
  - Because the matrix is formed using the model-view matrix, we may want to first push original model-view matrix on matrix stack
Preorder Traversal

```c
void traverse(treenode* root)
{
 if(root==NULL) return;
 mvstack.push(ctm);
 ctm = ctm*root->m;
 root->f();
 if(root->child!=NULL) traverse(root->child);
 ctm = mvstack.pop();
 if(root->sibling!=NULL)
 traverse(root->sibling);
}
```
Traversal Code & Matrices

- **figure()** called with CTM set
- $M_{\text{fig}}$ defines figure’s place in world

```cpp
figure() {
 PushMatrix()
 torso();
 Rotate (...);
 head();
 PopMatrix();
 PushMatrix();
 Translate(...);
 Rotate(...);
 left_upper_arm();
}
```

Stack  CTM

<table>
<thead>
<tr>
<th>Stack</th>
<th>CTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\text{fig}}$</td>
<td>$M_{\text{fig}}$</td>
</tr>
<tr>
<td>$M_{\text{fig}}$</td>
<td>$M_{\text{fig}}M_{\text{h}}$</td>
</tr>
<tr>
<td>$M_{\text{fig}}$</td>
<td>$M_{\text{fig}}$</td>
</tr>
<tr>
<td>$M_{\text{fig}}$</td>
<td>$M_{\text{fig}}M_{\text{lua}}$</td>
</tr>
</tbody>
</table>
Traversal Code & Matrices

- `PushMatrix()`
- `Translate(…);`
- `Rotate(…);`
- `left_lower_arm();`
- `PopMatrix();`
- `PushMatrix();`
- `Translate(…);`
- `Rotate(…);`
- `right_upper_arm();`
- `…`
- `…`
Notes

• We must save current transformation matrix before multiplying it by node matrix
  - Updated matrix applies to children of node but not to siblings which contain their own matrices

• The traversal program applies to any left-child right-sibling tree
  - The particular tree is encoded in the definition of the individual nodes

• The order of traversal matters because of possible state changes in the functions
Homework 5

• Create models for links (P0, P1, P2 & P3)
• Draw base model (P0)
• $M = T_z(L0) \cdot R_z(\theta_1)$ • ≡ matrix multiply
• Apply transformation matrix $M$ to first link model (P1): $P1' = M \cdot P1$
• Draw P1’
• $M = M \cdot (T_z(L1) \cdot R_y(\theta_2))$
• $P2' = M \cdot P2$ // Apply matrix to second link
• Draw P2’
• $M = M \cdot (T_z(L2) \cdot R_y(\theta 3))$
• $P3' = M \cdot P3$  // Apply matrix to third link
• Draw $P3'$
• $M = M \cdot T_z(L3)$
• Extract translation vector from $M$ as the position for drawing sphere at end of arm