Models of the Bidirectional Reflectance Distribution Function

Steve Lombardi
Drexel University
Photo-realistic Image Synthesis
Image Formation
Surface Reflectance
Surface Reflectance

\[\theta_o, \varphi_o \leftrightarrow \omega_o \text{ – Outgoing direction} \]

\[\theta_i, \varphi_i \leftrightarrow \omega_i \text{ – Incident direction} \]

\[f_r(\omega_i, \omega_o) = \frac{dL_o(\omega_o)}{L_i(\omega_i)(\mathbf{n} \cdot \omega_i)d\omega_i} \]

[F. Nicodemus 65]
BRDF

\[f_r(\omega_i, \omega_o) = \frac{dL_o(\omega_o)}{L_i(\omega_i)(\mathbf{n} \cdot \omega_i) d\omega_i} \]

Image Synthesis

Given
- \(f_r(\omega_i, \omega_o) \)
- \(L_i(\omega_i) \)
- \(\mathbf{n} \)

Unknown
- \(L_o(\omega_o) \)

Photometric Stereo

Given
- \(L_o(\omega_o) \)
- \(f_r(\omega_i, \omega_o) \)
- \(L_i(\omega_i) \)

Unknown
- \(\mathbf{n} \)
Physical Properties

- **Reciprocity**
 \[f_r(\omega_i, \omega_o) = f_r(\omega_o, \omega_i) \]

- **Energy Conservation**
 \[\int_{\Omega} f_r(\omega_i, \omega_o)(n \cdot \omega_o) d\omega_o \leq 1 \]

- **Positivity**
 \[f_r(\omega_i, \omega_o) \geq 0 \]

- **Isotropy**
 \[\forall k \quad f_r(\theta_i, \phi_i, \theta_o, \phi_o) = f_r(\theta_i, \phi_i + k, \theta_o, \phi_o + k) \]
 \[f_r(\theta_i, \theta_o, |\phi_i - \phi_o|) \]
Desired Traits of a BRDF Model

- Compactness
 - Small number of parameters
- Expressiveness
 - Modeling a wide variety of behavior
- Editability
 - Ability to be intuitively modified
Modeling the BRDF

- Ideal models
- Physically-based models
- Non-parametric models
- Phenomenological models
Ideal Models :: Ideal Diffuse

\[f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{\rho}{\pi} \]

- Scatters light equally in all viewing directions
- Known as Lambertian reflectance [J. Lambert 1760]
Ideal Models :: Ideal Specular

$$f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{\delta(\theta_i - \theta_o)\delta(\phi_i - \phi_o - \pi)}{\sin \theta_i \cos \theta_i}$$

- Perfectly smooth surface which reflects light
Ideal Models :: Ideal Retroreflector

\[f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{\delta(\theta_i - \theta_o)\delta(\phi_i - \phi_o)}{\sin \theta_i \cos \theta_i} \]

- Light reflected back to incident direction
Microfacet Models

\[n \]
Physically-based :: Torrance-Sparrow

- Specular microfacet model
 - Facets exhibit the Fresnel effect
- Facets distributed on surface probabilistically
- Only facets aligned to halfway vector contribute radiance
- Each facet has an adjacent opposing facet rotated 180° which form a “V-cavity”
 - Facets may mask each other or shadow incident light from one another
Physically-based :: Torrance-Sparrow

\[f_r(\omega_i, \omega_o) = \frac{D(\theta_h)F(\omega_i, H)G(\omega_i, \omega_o, H)}{4 \cos \theta_i \cos \theta_o} \]

- \(D(\theta_a) \) • distribution of facet slopes
- \(F(\omega_i, H) \) • Fresnel term
- \(G(\omega_i, \omega_o, H) \) • geometric term

\[D(\theta_a) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{\theta_a^2}{2\sigma^2} \right) \]
Physically-based :: Torrance-Sparrow

Renderings of a sphere with the Torrance-Sparrow model with increasing surface roughness
Physically-based :: Torrance-Sparrow

- Advantages
 - Compact
 - Physically-based

- Disadvantages
 - Only models specular phenomenon
Physically-based :: Oren-Nayar

- Diffuse microfacet model
 - Lambertian facets
- Facets distributed on surface probabilistically
- All facets contribute to outgoing radiance
 - Requires integration
- Each facet has a partner rotated 180 degree which form a V-cavity
 - Facets may mask, shadow and interreflect

(a) Shadowing
(b) Masking
(c) Interreflection

[M. Oren 94]
Physically-based :: Oren-Nayar

(a) Image (b) Lambertian (c) Model
Physically-based :: Oren-Nayar

Wall Plaster

Sand Paper
Physically-based :: Oren-Nayar

- Advantages
 - Compact
 - Physically-based

- Disadvantages
 - Only model diffuse phenomenon
 - Only an approximation to the formulation
Physically-based Models

- Advantages
 - Compactness
 - Obeys physical BRDF constraints

- Disadvantages
 - Reduced expressiveness
Non-parametric Models

- Based on measured BRDF data
- Often high storage requirements
- Typically high accuracy and expressiveness
A Data-Driven Reflectance Model

- Introduces the MERL/MIT BRDF database
 - 100 measured isotropic BRDFs
- Linear and non-linear dimensionality reduction
 - Linear: 45 dimensions
 - Nonlinear: 15 dimensions
- User-defined description vectors
 - Enable intuitive editing
Non-parametric :: Data-Driven
Non-parametric :: Data-Driven

- Data is stored in a new parameterization
 - $\theta_i, \varphi_i, \theta_o, \varphi_o \leftrightarrow \theta_d, \varphi_d, \theta_h, \varphi_h$

- 90 samples of θ_d, 90 of θ_h, 180 of φ_d, 3 color channels
- 4,373,400 total samples
Non-parametric :: Data-Driven

- Each BRDF is 4,374,000-dimensional vector
- Using linear dimensionality reduction
 - Less than 1% reconstruction error with 45-dimensional subspace
 - Problem: dimensions do not always correspond to plausible BRDF

- Using non-linear dimensionality reduction
 - Charting dimensionality reduction algorithm
 - Steep reconstruction error drop-off with 15-dimensional space
Non-parametric :: Data-Driven

- Users categorize BRDFs according to certain properties
- Support vector machines find a classification hyperplane
- The normal of this hyperplane is used as a description vector
- Moving along this vector increases that characteristic
 - E.g. “redness”, “shininess”, “silverness”, etc.,
Non-parametric :: Data-Driven

Editing with “silverness” vector

Editing with “redness” vector
Non-parametric :: Data-Driven

- Advantages
 - Excellent way to edit BRDF
 - Captures a natural space of isotropic BRDFs
- Disadvantages
 - Difficult to generalize from only 100 samples
 - Extremely large vectors make it less useful for direct rendering
 - Description vectors are not orthogonal
 - Changing one trait might unintentionally affect another
Non-parametric :: Passive Reflectometry

- Motivated by difficulty of measuring BRDFs
- Utilizes parameterization as in previous model
 - $\theta_i, \varphi_i, \theta_o, \varphi_o \leftrightarrow \theta_d, \varphi_d, \theta_h, \varphi_h$
- Assuming isotropy reduces dimensionality to 3
- Assuming invariance along φ_d reduces dimensionality to 2
- Non-linear sampling along θ_h for highlight precision
Nonparametric :: Passive Reflectometry
Non-parametric :: Passive Reflectometry

• Advantages
 • Represents a wide class of BRDFs with a low number of samples

• Disadvantages
 • Ignores additional data which may affect some materials
Non-parametric

- Advantages
 - Accurate and expressive

- Disadvantages
 - Requires large amounts of storage space
 - Not suited to real-time rendering
 - Unable to extrapolate/generalize
Phenomenological Models

- Attempt to represent BRDFs empirically
- Vary in expressiveness, compactness
- May not satisfy physical BRDF conditions
Phenomenological :: Lafortune

- Generalization of Phong’s reflectance model
 \[f_r(\omega_i, \omega_o) = C_s (\omega_m \cdot \omega_o)^n \]
- Replaces dot product with weighted dot product
 \[f_r(\omega_i, \omega_o) = (C_x \omega_{i,x} \omega_{o,x} + C_y \omega_{i,y} \omega_{o,y} + C_z \omega_{i,z} \omega_{o,z})^n \]
Phenomenological :: Lafortune

- $C_x = C_y = -1, C_z = 1$
 - Phong model
- $|C_x| = |C_y| > |C_z|$
 - Off-specular reflection
- $C_x = C_y > 0$
 - Retroreflective
- $C_x = C_y = 0$
 - Generalized diffuse
- $C_x \neq C_y$
 - Anisotropic
Phenomenological :: Lafortune
Phenomenological :: Lafortune

Laforutne (dashed lines) compared to HTSG (solid line)

Laforutne (dashed lines) compared to measured BRDF (solid line)
Phenomenological :: Lafortune

- Advantages
 - Compact
 - Fast

- Disadvantages
 - Cannot model all possible BRDFs
 - Work by Stark et al. shows this
Phenomenological :: Zernike Polynomials

- Set of orthogonal bases on the unit disk
- Can be transformed onto the hemisphere easily
- A function of the Cartesian product of the Zernike polynomials can be used as a basis function for the BRDF

Contour density plots of the Zernike polynomials

[J. Koenderink 98]
Phenomenological :: Zernike Polynomials

- BRDF as linear combination of basis functions
 \[f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \sum_{mnkl} a_{nm} H_{nm}^{kl}(\theta_i, \phi_i, \theta_o, \phi_o) \]

- Each basis function is a combination of Zernike polynomials K transformed onto the hemisphere
 \[H_{nm}^{kl}(\theta_i, \phi_i, \theta_o, \phi_o) \propto K_n^k(\theta_i, \phi_i) K_m^l(\theta_o, \phi_o) + K_n^k(\theta_o, \phi_o) K_m^l(\theta_i, \phi_i) \]

- Automatically respects reciprocity
- 295 basis functions for total order 8
 - Much too large
Phenomenological :: Zernike Polynomials

- Isotropic scattering only

\[f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \sum_{nml} a_{nm}^l I_{nm}^l(\theta_i, \phi_i, \theta_o, \phi_o) \]

- Only based on azimuthal difference

\[I_{nm}^l(\theta_i, \phi_i, \theta_o, \phi_o) \propto K_n^l(\theta_i, |\phi_i - \phi_o|)K_m^l(\theta_o, |\phi_i - \phi_o|) + K_m^l(\theta_i, |\phi_i - \phi_o|)K_n^l(\theta_o, |\phi_i - \phi_o|) \]

- 55 basis function of total order 8
Phenomenological :: Zernike Polynomials

- **Advantages:**
 - Graceful compression by truncation
 - Easy fitting by convolution

- **Disadvantages**
 - Large dimensionality for accurate representation
 - Ringing side-effects from truncation
Phenomenological :: Halfway Vector Disk

- Designed for Monte Carlo rendering
 - Uses probabilistic formulation of BRDF
- Samples halfway vector instead of incident direction
- Samples halfway vector by sampling from halfway vector disk
Phenomenological :: Halfway Vector Disk

- “Lump” PDFs on halfway vector disk
 \[p(h) \propto \left[1 - \frac{||h - c||^2}{R^2} \right]^n \]

- Two BRDF models proposed with PDFs
 - Empirical model
 - Radii confined within unit disk
 - One specular lump, one retroreflective lump
 - Data-fitting model
 - Radii not confined to unit disk
 - Two specular lumps
Phenomenological :: Halfway Vector Disk

Reference image rendered with measured data

Rendered with data-fitting model

Rendered with empirical model
Phenomenological :: Halfway Vector Disk

Rendered with data-fitting model

Rendered with Lawrence et al. BRDF
Phenomenological :: Halfway Vector Disk

- **Advantages**
 - Superior performance for Monte Carlo rendering
 - Empirical model perfectly conserves energy
- **Disadvantages**
 - Does not enforce reciprocity
Model Comparison :: Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>Reciprocity</th>
<th>Energy Conservation</th>
<th>Positivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrance-Sparrow</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oren-Nayar</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Data-driven</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Non-parametric Bivariate</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lafortune*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Halfway vector disk</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Lafortune model can be positive *under* the hemisphere.*
Model Comparison :: Desired Traits

<table>
<thead>
<tr>
<th></th>
<th>Compactness</th>
<th>Expressiveness</th>
<th>Intuitive editing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrance-Sparrow</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Oren-Nayar</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Data-driven</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-parametric Bivariate</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lafortune</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Halfway vector disk</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Model Comparison :: Rendered Scenes

- Measured
- Lambertian + Torrance-Sparrow
- Lambertian + Lafortune
Conclusion

- Applications drive model characteristics
 - Excellent for fast, expressive rendering: Lafortune
 - Outstanding for editing: Data-Driven Reflectance Model

- Alternate parameterization is key
 - Halfway-based formulations excel
 - Finding natural variation among reflectance parameters
References

References

