Start Up
- Any questions from last time?
- Go over Phong shading?
- Or intersection algorithms?

Ray/Plane Intersection
Ray is defined by \(R(t) = R_o + R_d \cdot t \) where \(t \geq 0 \)
\(R_o = \) Origin of ray at \((x_o, y_o, z_o) \)
\(R_d = \) Direction of ray \([x_d, y_d, z_d]\) (unit vector)

Plane is defined by \([A, B, C, D]\)
\(A x + B y + C z + D = 0 \) for a point in the plane
Normal Vector, \(N = [A, B, C] \) (unit vector)
\(A^2 + B^2 + C^2 = 1 \)
\(D = -N \cdot P_0 \) \((P_0 \) - point in plane)
What Can Happen?

- \(N \cdot R_d = 0 \)
- \(N \cdot R_d > 0 \)

Ray/Plane Summary

Intersection point:

\[(x_i, y_i, z_i) = (x_0 + x_d t_i, y_0 + y_d t_i, z_0 + z_d t_i)\]

1. Calculate \(N \cdot R_d \) and compare it to zero.
2. Calculate \(t_i \) and compare it to zero.
3. Compute intersection point.
4. Flip normal if \(N \cdot R_d \) is positive

Ray-Parallelepiped Intersection

- Axis-aligned
- From \((X_1, Y_1, Z_1)\) to \((X_2, Y_2, Z_2)\)
- Ray \(P(t) = R_o + R_d t \)

Naïve ray-box Intersection

- Use 6 plane equations
- Compute all 6 intersection
- Check that points are inside box
- \(Ax + By + Cz + D \leq 0 \)

Factoring out computation

- Pairs of planes have the same normal
- Normals have only one non-zero component
- Do computations one dimension at a time
- Maintain \(t_{\text{near}} \) and \(t_{\text{far}} \) (closest and farthest so far)

Test if parallel

- If \(R_d x = 0 \), then ray is parallel
- If \(R_d x < X_1 \) or \(R_d x > x_2 \) return false
If not parallel

- Calculate intersection distance t1 and t2
 - t1 = (X1 - Rx)/Rdx
 - t2 = (X2 - Rx)/Rdx

Test 1

- Maintain tnear and tfar
 - If t1 > t2, swap
 - if t1 > tnear, tnear = t1
 - if t2 < tfar, tfar = t2
 - If tnear > tfar, box is missed

Test 2

- If tfar < 0, box is behind

Algorithm recap

- Do for all 3 axes
 - Calculate intersection distance t1 and t2
 - Maintain tnear and tfar
 - If tnear > tfar, box is missed; Done
 - If tfar < 0, box is behind; Done
 - If box survived tests, return intersection at tnear
 - If tnear is negative, return tfar

Homogeneous Coordinates

- Add an extra dimension
 - In 2D, we use 3 x 3 matrices
 - In 3D, we use 4 x 4 matrices
- Each point has an extra value, w

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{pmatrix} =
\begin{pmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
w
\end{pmatrix}
\]

\[
p' = M p
\]
Homogeneous Coordinates

Most of the time \(w = 1 \), and we can ignore it

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Translate \((t_x, t_y, t_z)\)

Why bother with the extra dimension? Because now translations can be encoded in the matrix!

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Scale \((s_x, s_y, s_z)\)

Isotropic (uniform) scaling: \(s_x = s_y = s_z \)

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

You only have to implement uniform scaling

Rotation

About \(z \) axis

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 \cos \phi & -\sin \phi & 0 \\
 \sin \phi & \cos \phi & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

Rotation

About \((k_x, k_y, k_z)\), an arbitrary unit vector (Rodrigues Formula)

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 k_k(1-c)+c & k_k(1-c)k_s & k_k(1-c)+k_s \\
 k_k(1-c)+k_s & k_k(1-c)+c & k_k(1-c)-k_s \\
 k_k(1-c)-k_s & k_k(1-c)-k_s & k_k(1-c)+c
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

where \(c = \cos \theta \) & \(s = \sin \theta \)
How are transforms combined?

Scale then Translate

Use matrix multiplication: \(p' = T(Sp) = (TS)p \)

\[
TS = \begin{bmatrix}
1 & 0 & 3 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

\[
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\]

Caution: matrix multiplication is NOT commutative!

Non-commutative Composition

Scale then Translate: \(p' = T(Sp) = TS \ p \)

Translate then Scale: \(p' = S(Tp) = ST \ p \)

Transformations in Ray Tracing

Transformations in Modeling

- Position objects in a scene
- Change the shape of objects
- Create multiple copies of objects
- Projection for virtual cameras
- Animations

Scene Description

- Camera
- Lights
- Background
- Materials
- Objects
Simple Scene Description File

Camera {
 center 0 0 10
 direction 0 0 -1
 up 0 1 0
}

Lights {
 numLights 1
 DirectionalLight {
 direction -0.5 -0.5 -1
 color 1 1 1
 }
 Background { color 0.2 0.0 0.6 }
}

Materials {
 numMaterials <n>
 <MATERIALS>
}

Group {
 numObjects <n>
 <OBJECTS>
}

Hierarchical Models

- Logical organization of scene

Simple Example with Groups

Group {
 numObjects 3
 Group {
 numObjects 3
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 }
 Group {
 numObjects 2
 Group {
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 }
 Group {
 Box { <BOX PARAMS> }
 Sphere { <SPHERE PARAMS> }
 Sphere { <SPHERE PARAMS> }
 }
 }
 Plane { <PLANE PARAMS> }
}

Adding Materials

Group {
 numObjects 3
 Group {
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 }
 Group {
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 Box { <BOX PARAMS> }
 }
 Group {
 Sphere { <SPHERE PARAMS> }
 Sphere { <SPHERE PARAMS> }
 }
}

Using Transformations

- Position the logical groupings of objects within the scene
- Transformation in group
Directed Acyclic Graph is more efficient and useful

- Leaf Node (superquadric)
- Non-Leaf Node (boolean operations)
- Transformation

Processing Model Transformations
- Goal
 - Get everything into world coordinates
 - Traverse graph/tree in depth-first order
 - Concatenate transformations
 - Can store intermediate transformations
 - Apply/associate final transformation to primitive at leaf node
- What about cylinders, superquadrics, etc.?
 - Transform ray!

Transform the Ray
- Map the ray from **World Space** to **Object Space**

\[
p_{WS} = M \cdot p_{OS}
\]
\[
p_{OS} = M^{-1} \cdot p_{WS}
\]

Transform Ray
- New origin:
 \[
 (p_{WS} + t_{WS} \cdot d_{WS}) \cdot M^{-1}
 \]
- New direction:
 \[
 (p_{WS} + t_{WS} \cdot d_{WS}) \cdot M^{-1}
 \]

Transforming Points & Directions
- Transform point
- Transform direction
- Map intersection point and normal back to world coordinates

Transform Normals
- Why? They're used for shading

object color only
Diffuse Shading
Transforming Normals

- A surface normal is a property, not a geometric entity.
- Correct normal transformation matrix: \(A = (M^{-1})^T \)

See https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/transforming-normals

How can we implement CSG?

<table>
<thead>
<tr>
<th>Points on A, Outside of B</th>
<th>Points on B, Inside of A</th>
<th>Points on B, Outside of A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Union</th>
<th>Intersection</th>
<th>Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>A B</td>
<td>A B</td>
</tr>
</tbody>
</table>

Collect all the intersections

<table>
<thead>
<tr>
<th>Points on B, Inside of A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Union</th>
<th>Intersection</th>
<th>Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>A B</td>
<td>A B</td>
</tr>
</tbody>
</table>

Implementing CSG

1. Test "inside" intersections:
 - Find intersections with A, test if they are inside/outside B
 - Find intersections with B, test if they are inside/outside A

2. Overlapping intervals:
 - Find the intervals of "inside" along the ray for A and B
 - Compute union/intersection/subtraction of the intervals

Constructive Solid Geometry (CSG)

Given overlapping shapes A and B:

- Union
- Intersection
- Subtraction

Ray Tracing CSG Models

Rick Parent
Ohio State U.
Seminal paper
Ray tracing CSG models

CSG
- Form object as booleans of primitive objects
 - Primitives: sphere, cube, cylinder, cone
 - Boolean operators: union, intersection, difference
- Tree structure used to manage operations
 - Leaf nodes are primitive objects
 - Intermediate nodes specify combination operator

Ray tracing CSG models
- Intersect ray with primitives
- Produces “spans” along ray
- Perform Boolean operations on spans
- Determines intersection of evaluated model
- Calculate normal at intersection

Possible ways for 2 spans to overlap

Union
Ray intersects union: at first intersection

\[\text{Min}(t_{\text{min}}^a, t_{\text{min}}^b) \]

Intersection
First time in B and in C

If \((t_{\text{min}}^a < t_{\text{max}}^b)\) and \((t_{\text{max}}^a < t_{\text{min}}^b)\): \(t_{\text{min}}^a\)
Else if \((t_{\text{max}}^a < t_{\text{min}}^b)\) and \((t_{\min}^a < t_{\text{max}}^b)\): \(t_{\text{min}}^b\)
Else: none
Difference

If \(t_{B_{\text{min}}} < t_{C_{\text{min}}} \): \(t_{B_{\text{min}}} \)
Else if \(t_{C_{\text{max}}} < t_{B_{\text{max}}} \): \(t_{C_{\text{max}}} \)
Else: none

First time in B not in C

Definition: 66

Primitives

Anything that can be intersected (easily) with a ray

- Conics: solve analytically using \(R(t) \)
- Convex polyhedra
- A plane (a cutting plane is useful)

- Can be used as a modeling tool (boolean operations)
- Surface model (e.g., polyhedron) computed from CGS
- Can be used as a model representation
 - Keep tree structure and ray trace directly

Controlling the Combinations

Tree Structure

Tree Structure #1

First time in C not in B

If \((t_{C_{\text{min}}} < t_{B_{\text{min}}}) \): \(t_{C_{\text{min}}} \)
Else if \((t_{B_{\text{max}}} < t_{C_{\text{max}}}) \): \(t_{B_{\text{max}}} \)
Else: none

First time in B not in C

Definition: 67

Primitives

Anything that can be intersected (easily) with a ray

- Conics: solve analytically using \(R(t) \)
- Convex polyhedra
- A plane (a cutting plane is useful)

- Can be used as a modeling tool (boolean operations)
- Surface model (e.g., polyhedron) computed from CGS
- Can be used as a model representation
 - Keep tree structure and ray trace directly

Controlling the Combinations

Tree Structure

Tree Structure #1
Tree Structure

- Intersect ray with leaf nodes (primitive objects)
- Combine intersection spans according to intermediate nodes
 - union
 - intersection
 - difference
- Might create multiple spans

Union of Spans

Intersection of Spans

Difference of Spans
Normals of CSG intersections

Normal of some surface (or its negation)

Union or intersection: positive normal of intersected surface

Difference normals

- Intersection is one of:
 - t_{\min} of positive object – normal of surface
 - t_{\max} of negative object – negated normal

Add transformations to tree

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/csg.html

Bounding Volumes

Construction
- Use bounding volumes at leaf nodes
- Union bounding volumes at interior nodes

Traversal
- Top-down
- Test bounding volume at interior

Example

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/csg.html

Example
Wrap Up

- Discuss status/problems/issues with next programming assignment