CS 636
Advanced Rendering Techniques

- Dr. David Breen
- Online
- Wednesday 6PM → 8:50PM
 - Presentation 6
 - 5/13/20
Questions from Last Time?

- Sampling Theory
- Fourier Analysis
- Anti-aliasing
- Supersampling Strategies
Slide Credits

- Charles B. Owen - Michigan State University
Illumination and Shading

➢ The Hall illumination model

➢ Original ray tracing paper
Discrete Illumination Models

- What occurs when light strikes a surface is quite complex.
 - Continuous process
 - Light from infinite angle reflected in infinite directions
- We are determining intensity of a pixel with...
 - Finite number of point lights
 - Finite reflections into space
 - Finite illumination directions
- Hence, we must have a *discrete model* for lighting and illumination.
Illumination Models

- What should a lighting model entail?
 - Discrete
 - Lights
 - Types of surface reflection

- Commercial systems can be quite complex
 - Most start with a basic model and embellish to pick up details that are missing
Elements of Lighting at a point

N – The surface normal
L – Vector to the light
V – Vector to the eye
R – Reflection direction
Reflection

- What we need is the amount of light reflected to the eye

This consists of several components…
Diffuse Reflection

- Diffuse reflection - light reflected in all directions equally (or close to equally)
 - Most objects have a component of diffuse reflection
 - other than pure specular reflection objects like mirrors
 - What determines the intensity of diffuse reflection?
Diffuse Reflection Characteristics

- Since the intensity is the same in every direction, the only other characteristic is the angle between the light and the surface normal. The smaller this angle, the greater the diffuse reflection:
Diffuse reflection decreases intensity by the cosine of the angle between the light and surface normal.

\[\cos \theta = \frac{w}{w'} \]

\[w = w' \cos \theta \]
Specular Reflection

- Specular reflection - If the light hits the surface and is reflected off mostly in a reflection direction, we have specular reflection.
 - There is usually some diffusion.
 - A perfect specular object (no diffusion at all) is a mirror.
 - Most objects have some specular characteristics.
Diffuse and Specular colors

- Typically the colors reflected for diffuse and specular reflection are different
 - **Diffuse** – Generally the surface appearance
 - **Specular** – The color of bright highlights, *often more white* than the surface color
Where do these come from?

Most surfaces tend to have:

- Deep color, the color of the paint, finish, interior material, etc.
 - Diffuse Color
- Surface reflection characteristics, varnish, polish, smoothness
 - Specular Color
The Hall Illumination Model
Components of the Hall Model

\[I(\lambda) = k_{sr} \sum_j I_{lj}(\lambda)F_{sr}(\lambda, \theta_{r,j})(\cos \theta_{r,j})^n \]
\[+ k_{st} \sum_j I_{lj}(\lambda)F_{st}(\lambda, \theta_{t,j})(\cos \theta_{t,j})^{n'} \]
\[+ k_{dr} \sum_j I_{lj}(\lambda)F_{dr}(\lambda)(N \cdot L_j) \]
\[+ k_{sr} I_{sr}(\lambda)F_{sr}(\lambda, \theta_R)T_r^{\Delta_{sr}} \]
\[+ k_{st} I_{st}(\lambda)F_{st}(\lambda, \theta_T)T_t^{\Delta_{st}} \]
\[+ k_{dr} I_{a}(\lambda)F_{dr}(\lambda) \]
Hall Model

\[\text{DIFFUSE} = k_d (\hat{N} \cdot \hat{L}) R_d l_i \]
\[\text{SPECULAR} = k_s (\hat{N} \cdot \hat{H})^n R_f l_i \]
\[\text{TRANSMITTED} = k_s (\hat{N} \cdot \hat{H'})^n T_f l_i \]

\[\text{DIFFUSE} = l_a R_d \]
\[\text{SPECULAR} = k_s R_f l_f F_r \, dr \]
\[\text{TRANSMITTED} = k_s T_f l_f F_t \, dt \]
Implementing Shadows

- At every ray intersection shoot a “shadow” ray at every point light source in your scene
- If an object is hit before reaching the light, don’t use the light when shading that intersection point
- What if occluding object is “transparent”?
 - Make light’s contribution weighted rather than binary
Ambient Light

- Ambient light is light with no associated direction. The term in the Hall shading model for ambient light is:

\[k_{dr} I_a(\lambda) F_{dr}(\lambda) \]

- \(k_{dr} \) is the coefficient of diffuse reflection.
 - This term determines how much diffuse reflection a surface has. It ranges from 0 to 1 (as do most of these coefficients).
 Ambient Light

- $I_a(\lambda)$ is the spectrum of the ambient light.
 - It is a function of the light wavelength λ.
 - In nature this is a continuous range. For us it is the intensity of three values: Red, Blue, and Green, since that is how we are representing our spectrum.
 - In other words, there are only 3 possible values for λ. Simply perform this operation for each color!
Ambient Light

- $F_{dr}(\lambda)$ is the Fresnell term for diffuse reflection.
 - It specifies a curve of diffuse reflections for every value of the spectrum. We don’t have every possible color, we only have three. So, this term specifies how much of each color will be reflected. It is simply the color of the object.
Implementation

- It’s common to combine k_{dr} and $F_{dr}(\lambda)$
 - $F_{dr}(\lambda)$ is really just a (diffuse) color
 - $I_a(\lambda)$ is the ambient light color
 - Can just define an ambient surface color

- Possible implementation

```c
for (int c=0; c<3; c++)
    hallcolor[c] = lightambient[c] * k_{dr} * surfacediffuse[c];
```
Diffuse Reflection of Light Sources

- The iterator \(j \) takes on the index of every light in the system.

- \(k_{dr} \) - coefficient of diffuse reflection.
- \(I_{lj}(\lambda) \) - spectrum of light source \(j \).
 - It is simply the color of the light.
- Can combine \(k_{dr} \) and \(F_{dr}(\lambda) \) to produce a single diffuse surface color.
Diffuse Reflection of Light Sources

- $N \cdot L_j$ component.
 - N is the surface normal at the point.
 - L_j is a vector towards the light.
 - Dot product is the cosine of the angle (vectors must be normalized).
 - Value decreases as the angle increases.

\[
k_{dr} \sum_j I_{lj}(\lambda)F_{dr}(\lambda)(N \cdot L_j)
\]
Specular Reflection of Light Sources

- k_{sr} and $I_{ij}(\lambda)$ are now obvious.
- $F_{sr}(\lambda, \theta_{r,j})$ is the Fresnell term representing the specular reflection curve of the surface.
 - Specular reflection is due to microfacets in the surface and this curve can be complex. In real world systems which strive for accuracy, this curve will be measured for a given material. Note that the curve is dependent on not only the wavelength, but also an angle.
- A simplification of this is to ignore the angle, which is what we will do.
 - But, the color of spectral highlights is independent of the color of the surface and is often just white.
 Specular Reflection of Light

Sources

\[k_{sr} \sum_j I_{lj}(\lambda) F_{sr}(\lambda, \theta_{r,j})(\cos \theta_{r,j})^n \]

- \(k_{sr} \) and \(F_{sr}(\lambda, \theta_{r,j}) \) can be combined to create a single “specular surface color”.
The Spectral Intensity Function

\[k_{sr} \sum_j I_{lj}(\lambda) F_{sr}(\lambda, \theta_{r,j})(\cos \theta_{r,j})^n \]

- \((\cos \theta_{r,j})^n\) is the spectral intensity function.
 - It represents the cosine of the angle between the “half” reflection vector and the surface normal raised to a power.
 - Maximum reflection is in the “mirror” direction.
Cosine of Reflection Angle

\[k_{sr} \sum_j I_{lj}(\lambda) F_{sr}(\lambda, \theta_{r,j})(\cos \theta_{r,j})^n \]

\[\cos \theta_{r,j} = N \cdot H_j \]

\[H = \frac{L + V}{|L + V|} \]

H bisects the angle between L and V
Reflection Angles

This is an example of maximum reflection.

In this case, the “half” vector is the same as the surface normal.

Cosine of angle between half vector and normal is 1.
Different Than Phong Shading

\[\cos \theta_{r,j} = N \cdot H_j \]

Hall Model

\[\cos \phi_{r,j} = v \cdot r_j \]

Phong Model
Hall vs. Phong Specular

- Same when $V = R$
 - $\cos(\theta) = \cos(\phi) = 1$
- Phong goes to zero when $V \perp R$. Then it goes negative!
- Hall only goes to zero when $L = V \& \& \perp N$.
- Hall never negative.
Specular Reflection Highlight Exponent

- The term n is called the specular reflection highlight exponent.
- This effects how large the spectral highlight is. A larger value makes the highlight smaller and sharper.
 - Matte surfaces has smaller n.
 - Very shiny surfaces have large n.
 - A perfect mirror would have infinite n.
Specular Reflection from Other Surfaces

- This is reflections of other surfaces.
- The only new terms are $I_{sr}(\lambda)$ and $T_r^{\Delta sr}$.
 - The $T_r^{\Delta sr}$ term reflects the fact that light falls off exponentially with distance. T_r is a term which models how much light falls off per unit of travel within the medium.
 - The Δsr term represents how far the light travels. Note that for mediums such as air and a small scene T_r is close to 1, so you can sometimes ignore it.
 - Glassner suggests $1/(1 + a*\Delta sr)$ instead.

\[
k_{sr}I_{sr}(\lambda)F_{sr}(\lambda, \theta_R)T_r^{\Delta sr}
\]
The Reflection Direction

- Given a view direction V and a normal N, the reflection direction R is:
 \[R = 2(N \cdot V)N - V \]

- $I_{sr}(\lambda)$ is the color seen in the reflection direction, i.e. the color returned from the reflection ray.

- k_{sr} and $F_{sr}(\lambda, \theta_{r,j})$ can be combined to create a single “reflection surface color”.
Transmission

- Transmission is light that passes through materials
Specular Transmission from Lights

- Bright spots from lights passing through objects. Most of the same issues apply.
- \(I_{lj}(\lambda) \) is the color of light \(j \).
- \(F_{st}(\lambda, \theta_{t,j}) \) specular transmissive color of object.
- \((\cos \theta_{t,j})^{n'} \) is how the specularity falls off if looking directly down the direction of transmission.
- Can be omitted from your shading.

\[
k_{st} \sum_{j} I_{lj}(\lambda)F_{st}(\lambda, \theta_{t,j})(\cos \theta_{t,j})^{n'}
\]
Refractive Transmission

Given indices of refraction on above and below a surface, we can compute the angle for the view and transmission vectors using Snell’s law.

\[
\frac{\sin \theta_i}{\sin \theta_j} = \frac{\eta_j}{\eta_i}
\]
What Transmission Looks Like

\[H_j' = \frac{V - \beta L_j}{\beta - 1}, \text{ where } \beta = \frac{\eta_2}{\eta_1} \]

\[\cos \theta_{t,j} \text{ this time is } (-N \cdot H'_j) \]

\(\eta_1 \) and \(\eta_2 \) are the indices of refraction for the from and to objects respectively.
Index of Refraction

- Ratio of speed of light in a vacuum to the speed of light in a substance.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum</td>
<td>1.0</td>
</tr>
<tr>
<td>Air</td>
<td>1.00029</td>
</tr>
<tr>
<td>Water</td>
<td>1.33</td>
</tr>
<tr>
<td>Glass</td>
<td>1.52</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.417</td>
</tr>
<tr>
<td>Sapphire</td>
<td>1.77</td>
</tr>
<tr>
<td>Salt</td>
<td>1.54</td>
</tr>
</tbody>
</table>
The Transmission Direction

\[\eta_r = \frac{\eta_i}{\eta_j} \]

\[T = \left(\eta_r (N \cdot V) - \sqrt{1 - \eta_r^2 (1 - (N \cdot V)^2)} \right) N - \eta_r V \]

See Glassner p. 134-141
Total Internal Reflection

- If light is traveling from η_i to a smaller η_j (e.g. out of water into air), the angle from the negative normal increases:

This can lead to the angle for T being ≥ 90 degrees!

This is called total internal reflection.

Square root term in previous equation goes negative.
Total Internal Reflection Hack

What to do if square root is negative?

- Return object’s reflective color, or
- Shoot an internal reflective ray, or
 - But, do what at bottom of ray tree?
 - Return transmissive color?
- Make T equal to -V
- Do the one that looks “best”
Specular Transmission from Other Surfaces

- This is transmitted light from other objects
- \(k_{st} \) - specular transmission coefficient
- \(I_{st}(\lambda) \) is the color value returned by transmitted ray
- \(F_{st}(\lambda, \theta_T) \) specular transmissive color of object
- \(T_r^{\Delta st} \) is the light fall off term, as before
 - Glassner suggests \(1/(1 + a*\Delta st) \) instead
- \(\Delta st \) is distance traveled through object
Hall Model Recap

\[I(\lambda) = k_{sr} \sum_j I_{lj}(\lambda)F_{sr}(\lambda, \theta_{r,j})(\cos \theta_{r,j})^n + k_{st} \sum_j I_{lj}(\lambda)F_{st}(\lambda, \theta_{t,j})(\cos \theta_{t,j})^{n'} + k_{dr} \sum_j I_{lj}(\lambda)F_{dr}(\lambda)(N \cdot L_j) + k_{sr}I_{sr}(\lambda)F_{sr}(\lambda, \theta_R)T_r^{\Delta sr} + k_{st}I_{st}(\lambda)F_{st}(\lambda, \theta_T)T_t^{\Delta st} + k_{dr}I_a(\lambda)F_{dr}(\lambda) \]
New Parameters

- Adding two new coefficients in order to provide more flexibility to the model
- k_r – Reflection coefficient
 - If set to zero, the object is not reflective
 - This will allow you to generate Phong-shaded models
- k_a – Ambient coefficient
 - Allows you to set ambient properties separate from diffuse properties

Algorithm Overview

- For every primary ray that hits object
 - Shoot shadow ray at each light
 - If you hit something on the way, don’t use light
 - Or decrease light color if object is transparent
 - Calculate diffuse, specular and ambient colors
 - Shoot reflected ray. Calculate color \(I_{sr}(\lambda) \) and add it to the shading equation
 - Shoot transmitted ray. Calculate color \(I_{st}(\lambda) \) and add it to the shading equation
 - Calculate transmissive specular highlight, if light ray goes through transparent object
Generating trees for moderately complex scenes

- Light is reflected from several surfaces before reaching the viewer.
- The light ray behavior can be modeled as a tree.
- The shader traverses the tree, applying the shading equation at each node to calculate intensity.
- Tree should have a preset maximum depth
Tricks

- Terminate shadow ray ASAP
- Limit the depth of ray tree
- Recursion can be stopped when color value difference drops below ε
- Shooting a secondary ray can be tricky
 - Move start point slightly away from surface in the direction of the local surface normal
- What if shadow ray hits a non-opaque object?
- What to do with total internal reflection and coming to the bottom of ray tree?
Next Programming Assignments

- Update shading equation
 - New specular angle
 - k’s can be combined with C’s, e.g.,
 - $C_r = k_r \times C_s$
 - $C_a = K_a \times C_d$
- Add shadows (A5)
- Add reflections (A6)

$$I = k_s \sum_j I_{Lj} C_s (\cos \phi)^n$$
$$+ k_d \sum_j I_{Lj} C_d (\cos \theta)$$
$$+ k_r I_r C_s$$
$$+ k_a I_a C_d$$