UNIVERSITY

Shading

CS 537 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Lessons Learned from HW4
Drexel

UNIVERSITY

* Only have an idle() function if something is animated

« Set idle function to NULL, when animation is not
running

« If an interaction (keyboard, mouse or menu) changes
something that requires a screen update, put
glutPostRedisplay at the end of the associated
callback function

« Only send geometry (vertices & colors) when it
changes

« IOW, If geometry never changes, only send it once

« Make sure your transformation matrices are applied
in the correct order

Objectives
Drexel

UNIVERSITY

*Learn to shade objects so their images
appear three-dimensional

*Introduce the types of light-material
interactions

+Build a simple reflection model---the
Phong model--- that can be used with
real time graphics hardware

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Why we need shading
Drexel

UNIVERSITY

* Suppose we build a model of a sphere
using many polygons and color it with one
color. We get something like

*But we want

L

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shading
Drexel

UNIVERSITY

* Why does the image of a real sphere look like

this?

« Light-material interactions cause each point to
have a different color or shade
* Need to consider
- Light sources
- Material properties
- Location of viewer

- Surface orientation
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scattering
Drexel

UNIVERSITY

+Light strikes A
- Some scattered
- Some absorbed

* Some of scattered light strikes B
- Some scattered ez

- Some absorbed ' \@B
* Some of this scattered
light strikes A A
and so on

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rendering Equation
Drexel

UNIVERSITY

* The infinite scattering and absorption of
light can be described by the rendering
equation

- Cannot be solved in general
- Ray tracing is a special case for perfectly
reflecting surfaces

*Rendering equation is global and includes

- Shadows
- Multiple scattering from object to object

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Global Effects
Drexel

UNIVERSITY

shadow

multiple reflection

translucent surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Local vs Global Rendering
Drexel

UNIVERSITY

« Correct shading requires a global
calculation involving all objects and light
sources

- Incompatible with pipeline model which shades
each polygon independently (local rendering)

*However, in computer graphics, especially
real time graphics, we are happy if things
Apok rightAy

- There are many techniques for approximating
global effects

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light-Material Interaction
Drexel

UNIVERSITY

+Light that strikes an object is partially
absorbed and partially scattered (reflected)

*The amount reflected determines the color
and brightness of the object
- A surface appears red under white light because
the red component of the light is reflected and the
rest is absorbed
*The reflected light is scattered in a manner
that depends on the smoothness and
orientation of the surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light Sources
Drexel

UNIVERSITY

General light sources are difficult to work
with because we must integrate light
coming from all points on the source

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Light Sources
Drexel

UNIVERSITY

+ Point source

- Model with position and color

- Distant source = infinite distance away (parallel)
* Spotlight

- Restrict light from ideal point source
* Ambient light

- Same amount of light everywhere in scene

- Can model contribution of many sources and
reflecting surfaces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Surface Types
Drexel

UNIVERSITY

» The smoother a surface, the more reflected light
is concentrated in the direction a perfect mirror
would reflected the light

* A very rough surface scatters light in all
directions

smooth surface rough surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 3

Phong Shading Model
Drexel

UNIVERSITY

« A simple model that can be computed rapidly
» Has three components

- Diffuse

- Specular

- Ambient n v
« Uses four vectors |

- To light source

- To viewer

- Normal p

- Perfect reflector

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Ideal Reflector
Drexel

UNIVERSITY

*Normal is determined by local orientation
* Angle of incidence = angle of reflection
* The three vectors must be coplanar

r=2(1-n)n-1

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 5

Lambertian Surface
Drexel

UNIVERSITY

* Perfectly diffuse reflector
*Light scattered equally in all directions
« Amount of light reflected is proportional to
the vertical component of incoming light
- reflected light ~cos 6;
- cos B; =1 - nif vectors normalized

- There are also three coefficients, k, ky, k, that
show how much of each color component is

reflected

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Lambert’s Law for Diffuse Reflection

Purely diffuse object Q
I=1Ik,cost \‘ n
=I,k,(n-L) NI

I: resulting intensity
I, : light source intensity

k; : (diffuse) surface reflectance coefficien
ky<[0,1]
0: angle between normal & light direction

Specular Surfaces
Drexel

UNIVERSITY

» Most surfaces are neither ideal diffusers nor
perfectly specular (ideal reflectors)

» Smooth surfaces show specular highlights due
to incoming light being reflected in directions
concentrated close to the direction of a perfect
reflection

specular
highlight

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

€19 Modeling Specular Relections
Drexel

UNIVERSITY

*Phong proposed using a term that
dropped off as the angle between the
viewer and the ideal reflection increased

n v
I~k I cos“dp

\ I
/)
reflected shininess coef

intensity ! incoming intensity P
absorption coef

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

The Shininess Coefficient
Drexel

UNIVERSITY

* Values of a between 100 and 200 correspond to

metals
« Values between 5 and 10 give surface that look
like plastic
-90 ¢ 90

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Ambient Light
Drexel

UNIVERSITY

* Ambient light is the result of multiple
interactions between (large) light sources
and the objects in the environment

* Amount and color depend on both the
color of the light(s) and the material
properties of the object

*Add k, I, to diffuse and specular terms

\ S

reflection coef intensity of ambient light

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Our Three Basic Components of Illumination

Diffuse Specular Ambient

Combined for the Final Result

Distance Terms
Drexel

UNIVERSITY

*The light from a point source that reaches
a surface is inversely proportional to the
square of the distance between them

*We can add a factor of the \%
form 1/(a + bd +cd?) to M

the diffuse and specular D r/‘ ‘
terms TN

*The constant and linear terms soften the
effect of the point source

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light Sources

UNIVERSITY

«In the Phong Model, we add the results
from each light source

*Each light source has separate diffuse,
specular, and ambient terms to allow for
maximum flexibility even though this form
does not have a physical justification

» Separate red, green and blue components
*Hence, 9 coefficients for each point source

- ldr’ ldg’ Idb' lsr’ Isg’ Isb’ lar’ lag‘ Iab

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Qﬁc Adding up the Components

Drexel

For each light source and each color
component, the Phong model can be
written (without the distance terms) as

I=k I, 1-n +k I (v r)e+k, I,

For each color component
we add contributions from

. P
all light sources

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

v

Material Properties

UNIVERSITY

» Material properties match light source

properties
- Nine absorbtion coefficients
kdr’ kdg' kdb’ ksr’ ksg' ksb! karY kag' kab

- Shininess coefficient a

Modified Phong Model

UNIVERSITY

*The specular term in the Phong model is

problematic because it requires the
calculation of a new reflection vector and

view vector for each vertex

*Blinn suggested an approximation using
the halfway vector that is more efficient

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Too Intense

With multiple light sources, it is easy to generated values of I > 1
One solution is to set the color value to be MIN(I, 1)
« An object can change color, saturating towards white

Ex. (0.1, 0.4,0.8) + (0.5, 0.5, 0.5) = (0.6, 0.9, 1.0)

EEEACOCOO

Another solution is to renormalize the intensities to vary from 0 to 1

ifone 1>1.
« Requires calculating all I’s before rendering anything.

< No over-saturation, but image may be too bright, and contrasts a
little off.

Image-processing on image to be rendered (with original 1’s) will
produce better results, but is costly.

Larry F. Hodges, G. Drew Kessler

The Halfway Vector

UNIVERSITY

*h is normalized vector halfway between 1
and v
h=(1+v)/|1+V]

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using the halfway vector
Drexel

UNIVERSITY

*Replace (v -r)*by(n-h)B
* 3 is chosen to match shineness

*Note that halfway angle is half of angle
between r and v if vectors are coplanar

*Resulting model is known as the modified
Phong or Blinn lighting model

- Specified in OpenGL standard

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

UNIVERSITY

Only differences in
these teapots are
the parameters

in the modified
Phong model

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computation of Vectors
Drexel

UNIVERSITY

» land v are specified by the application
» Can compute r from 1 and n
* Problem is determining n

« For simple surfaces n can be determined, but
how we determine n differs depending on
underlying representation of surface

* OpenGL leaves determination of normal to
application

- Exception for GLU quadrics and Bezier surfaces which
are deprecated

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Qﬁe Computing Reflection Direction

Drexel

UNIVERSITY

* Angle of incidence = angle of reflection

*Normal, light direction and reflection
direction are coplaner

*Want all three to be unit length

r=2(l*n)n-1

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Plane Normals

UNIVERSITY

*Equation of plane: ax+by+cz+d =0

*From Chapter 3 we know that plane is
determined by three points p,, p,, p; or
normal n and p, n

*Normal can be obtained by

n = (p,-py) < (P1-Po)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normal to Sphere

UNIVERSITY

« Implicit function f(x,y,z)=0
*Normal given by gradient
*Sphere f(p)=pp -1

* n = [of/ox, ofldy, ofloz]™=p

©

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric Form

©

» Tangent plane determined by vectors

UNIVERSITY

*For sphere

x=x(u,V)=cos u sin v
y=y(u,v)=cos u cos v
z=z(u,v)=sin u

Op/du = [0x/0u, dy/du, dz/ou]T
op/ov = [0x/0v, Oy/ov, 0z/0V]T

*Normal given by cross product
n = 0p/du x Op/ov

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Case

UNIVERSITY

*We can compute parametric normals for
other simple cases
- Quadrics
- Parameteric polynomial surfaces
- Bezier surface patches (Chapter 10)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

UNIVERSITY

Shading in OpenGL

CS 537 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

UNIVERSITY

*Introduce the OpenGL shading methods
- per vertex vs per fragment shading
- Where to carry out
* Discuss polygonal shading
- Flat
- Smooth
- Gouraud

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL shading
Drod
* Need
- Normals
- Material properties
- Lights

- State-based shading functions have
been deprecated (gINormal, giMaterial,
glLight)

- Get computed in application or send
attributes to shaders

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normalization

UNIVERSITY

« Cosine terms in lighting calculations can be
computed using dot product

« Unit length vectors simplify calculation

» Usually we want to set the magnitudes to have
unit length but

- Length can be affected by transformations
- Note that scaling does not preserved length
* GLSL has a normalization function

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

%

UNIVERSITY

Specifying a Point Light Source

« For each light source, we can set its position and
an RGBA for the diffuse, specular, and ambient

components
vecd diffuse0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vecd4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);
vecd light0_pos =vec4(1.0, 2.0, 3,0, 1.0);

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Distance and Direction

UNIVERSITY

« The source colors are specified in RGBA
* The position is given in homogeneous
coordinates
- If w =1.0, we are specifying a finite location
- If w =0.0, we are specifying a parallel source
with the given direction vector
« The coefficients in distance terms are usually
quadratic (1/(a+b*d+c*d*d)) where d is the
distance from the point being rendered to the
light source

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spotlights

UNIVERSITY

*Derive from point source

- Direction
- Cutoff
- Attenuation Proportional to cos®¢
Intensity
>@ o) 0

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Global Ambient Light

UNIVERSITY

* Ambient light depends on color of light
sources
- A red light in a white room will cause a red
ambient term that disappears when the light is
turned off
* A global ambient term is often helpful for
testing

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Moving Light Sources

UNIVERSITY

«Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

*Depending on where we place the position
(direction) setting function, we can

- Move the light source(s) with the object(s)

- Fix the object(s) and move the light source(s)

- Fix the light source(s) and move the object(s)

- Move the light source(s) and object(s) independently

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

4
7

Material Properties

UNIVERSITY

» Material properties should match the terms in
the light model

* Reflectivities
*w component gives opacity (alpha)

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0);
vecd4 diffuse = vec4(1.0, 0.8, 0.0, 1.0);
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);
GLfloat shine = 100.0

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Front and Back Faces
Drexel

UNIVERSITY

« Every face has a front and back

» For many objects, we never see the back face
so we donAtlcare how or if itAfirendered

« If it matters, we can handle in shader

Q e ©

back faces not visible back faces visible

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Transparency

UNIVERSITY

»Material properties are specified as RGBA
values

*The A value can be used to make the
surface translucent

* The default is that all surfaces are opaque
regardless of A

*Later we will enable blending and use this
feature

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygonal Shading
Drexel

UNIVERSITY

* In per vertex shading, shading calculations are
done for each vertex
- Vertex colors become vertex shades and can be
sent to the vertex shader as a vertex attribute
- Alternately, we can send the parameters to the
vertex shader and have it compute the shade
* By default, vertex shades are interpolated
across an object if passed to the fragment
shader as a varying variable (smooth shading)

*We can also use uniform variables to shade with
a single shade (flat shading)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygon Normals

UNIVERSITY

« Triangles have a single normal

- Shades at the vertices as computed by the
Phong model can almost be the same

- Identical for a distant viewer (default) or if there
is no specular component

 Consider model of sphere

* Want different normals at
each vertex

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Smooth Shading
Drexel

UNIVERSITY

*We can set a new
normal at each vertex
*Easy for sphere model

- If centered at originn=p
*Now smooth shading
works
*Note silhouette edge —

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Mesh Shading

UNIVERSITY

* The previous example is not general
because we knew the normal at each
vertex analytically

* For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (n;+tn,+tn;+ng)/ [n+n,+nstny

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

19 Normal for Triangle
Drexel

UNIVERSITY

plane n-(p-p,)=0 P>
n=(py-po) * (P~ Po)

normalize n < n/|n| Po

Note that right-hand rule determines outward face

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

814 Simple Mesh Format (SMF)
Drexel

UNIVERSITY

#$SMF 1.0
#5vertices 5
#5faces 6
v 2.0 0.0 2.0

» Michael Garland nep:/

graphics.cs.uiuc.edu/~garland/

v -2.0 0.0 -2.0
« Triangle data v -2.0 0.0 2.0
« List of 3D vertices v 0.0 5.0 0.0
« List of references to vertex array £l3z
define faces (triangles) £143
£352
£251
« Vertex indices begin at 1 £154
£453

57

Calculating Normals

Qf@ Gouraud and Phong Shading
Drexel

UNIVERSITY

* Gouraud Shading
- Find average normal at each vertex (vertex normals)

- Compute modified Phong shading model at each
vertex

- Interpolate vertex shades across each polygon
* Phong Shading
- Find averaged vertex normals
- Interpolate vertex normals across polygon
- Compute modified Phong model at each fragment

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Drexel
+-1 -1 *Create vector structure (for
v113 normals) same size as
. v 1 1-1
vertices < ¢ .1 -1 1 vertex structure
v 1-1 1
v-1 11 «Foreach face
f13 - Calculate unit normal
oot - Add to normals structure using
iriangles f12¢ vertex indices
- +Normalize all the normals
t133
£f248
£f286
Comparison

UNIVERSITY

« If the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show edges

* Phong shading requires much more work than
Gouraud shading

- Until recently not available in real time systems
- Now can be done using fragment shaders

* Both need data structures to represent meshes
S0 we can obtain vertex normals

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Comparison

UNIVERSITY

From Computer Desktop Encyclopedia
Reproduced uith permission.
© 2001 Intergraph Computer Systems

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 1

10

Adding up the Components
Drexel

UNIVERSITY

For each light source and each color
component, the Phong model can be
written (without the distance terms) as

I=k I, 1-n +k I (v r)e+k, I,

v

For each color component
we add contributions from
all light sources

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Lighting Shaders |
i, (Gouraud shading)

// vertex shader

in vec3 vPosition;

in vec3 vNormal;

out vec3 color; //vertex shade

// Light and material properties. Light color * surface color
uniform vec3 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec3 LightPosition;

uniform float Shininess;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Lighting Shaders i
Drexel

UNIVERSITY

void main()

{
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vec4(vPosition,1.0)).xyz;

// Light defined in camera frame

vec3 L = normalize(LightPosition - pos);
vec3 E = normalize(-pos);

vec3 H = normalize(L + E);

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Lighting Shaders Il
Drexel

UNIVERSITY

// Compute terms in the illumination equation
vec3 ambient = AmbientProduct;

float dTerm = max(dot(L, N), 0.0);

vec3 diffuse = dTerm*DiffuseProduct;

float sTerm = pow(max(dot(N, H), 0.0), Shininess);
vec3 specular = sTerm * SpecularProduct;

if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl_Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Lighting Shaders IV
Drexel

UNIVERSITY

// fragment shader

in vec3 color;
out vec4 frag color;

void main()

{

frag_color = vec4(color, 1.0);

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fragment Lighting Shaders |
i, (Phong Shading)

// vertex shader
in vec3 vPosition;
in vec3 vNormal;

// output values that will be interpolated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform vec4 LightPosition;
uniform vec3 EyePosition;
uniform mat4 ModelView;
uniform mat4 Projection;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 7

11

Fragment Lighting Shaders Il
Drexel

UNIVERSITY

void main()

{
fN = vNormal;
fE = EyePosition - vPosition.xyz;

/I Light defined in world coordinates
if (LightPosition.w = 0.0) {
fL = LightPosition.xyz - vPosition.xyz;
}else {
fL = LightPosition.xyz;
}
gl_Position = Projection*Model View*vPosition;

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fragment Lighting Shaders lli
Drexel

UNIVERSITY

// fragment shader

// per-fragment interpolated values from the vertex shader
in vec3 N;

in vec3 fL;

in vec3 fE;

out frag_color;

uniform vec3 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;
uniform float Shininess;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fragment Lighting Shaders IV

Drexel

UNIVERSITY

void main()
// Normalize the input lighting vectors
vec3 N = normalize(fN);
vec3 E = normalize(fE);

vec3 L = normalize(fL);

vec3 H =normalize(L + E);
vec3 ambient = AmbientProduct;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fragment Lighting Shaders V
Drexel

UNIVERSITY

float dTerm = max(dot(L, N), 0.0);
vec3 diffuse = dTerm*DiffuseProduct;

float sTerm = pow(max(dot(N, H), 0.0), Shininess);
vec3 specular = sTerm*SpecularProduct;

// discard the specular highlight if the light's behind the vertex
if(dot(L, N) < 0.0)
specular = vec3(0.0, 0.0, 0.0);

frag_color = vec4(ambient + diffuse + specular, 1.0);

¥

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 1

HW®6 Suggestions
Drexel

UNIVERSITY

*Write code for computing average surface
normal per vertex

»Use normal as color (don’t forget the
absolute value) and interpolate across
your model. This should look like your
HWS5 output, but with interpolated colors

*Implement Phong shading model in vertex

shader with one light. This is produces
Gouraud shading algorithm.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

HW®6 Suggestions
Drexel

UNIVERSITY

+Light and specular color should be white

*First light should be in camera coordinates
and placed above camera (e.g. (0,3,0))

* Test with sphere model and shininess of
100. Should get good results with a
distinct specular highlight

*Try the lo-res and hi-res bunny models
and note the differences in the specular
highlights between the two.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

12

HW®6 Suggestions

UNIVERSITY

*Next implement Phong shading algorithm
in fragment shader

*Be sure to use the same material and
lighting values for both shading algorithms

*Provide a way to switch between the two

*Provide interface for changing the object’s
material properties. The three choices
should be significantly different.

*Add a second light

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

HW®6 Suggestions

UNIVERSITY

« 27 light will need its own transformation
* Allow user to move light
*Keep track of which coordinate system

you are calculating your surface colors in.

Is it in world coordinates or camera
coordinates?

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

13

