
1

1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shading

CS 537 Interactive Computer Graphics
Prof. David E. Breen

Department of Computer Science

Lessons Learned from HW4

• Only have an idle() function if something is animated
• Set idle function to NULL, when animation is not

running
•  If an interaction (keyboard, mouse or menu) changes

something that requires a screen update, put
glutPostRedisplay at the end of the associated
callback function

• Only send geometry (vertices & colors) when it
changes

•  IOW, If geometry never changes, only send it once
• Make sure your transformation matrices are applied

in the correct order
2

3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

• Learn to shade objects so their images
appear three-dimensional

• Introduce the types of light-material
interactions

• Build a simple reflection model---the
Phong model--- that can be used with
real time graphics hardware

4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Why we need shading

• Suppose we build a model of a sphere
using many polygons and color it with one
color. We get something like

• But we want

5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shading

• Why does the image of a real sphere look like
this?

• Light-material interactions cause each point to
have a different color or shade

• Need to consider
-  Light sources
- Material properties
-  Location of viewer
-  Surface orientation

• Light strikes A
- Some scattered
- Some absorbed

• Some of scattered light strikes B
- Some scattered
- Some absorbed

• Some of this scattered
light strikes A
 and so on

6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scattering

2

7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rendering Equation

• The infinite scattering and absorption of
light can be described by the rendering
equation

- Cannot be solved in general
- Ray tracing is a special case for perfectly

reflecting surfaces

• Rendering equation is global and includes
- Shadows
- Multiple scattering from object to object

8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Global Effects

translucent surface

shadow

multiple reflection

9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Local vs Global Rendering

• Correct shading requires a global
calculation involving all objects and light
sources

-  Incompatible with pipeline model which shades
each polygon independently (local rendering)

• However, in computer graphics, especially
real time graphics, we are happy if things
Aþlook rightAÿ

- There are many techniques for approximating
global effects

1
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light-Material Interaction

• Light that strikes an object is partially
absorbed and partially scattered (reflected)

• The amount reflected determines the color
and brightness of the object

- A surface appears red under white light because
the red component of the light is reflected and the
rest is absorbed

• The reflected light is scattered in a manner
that depends on the smoothness and
orientation of the surface

1
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light Sources

General light sources are difficult to work
with because we must integrate light
coming from all points on the source

1
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Light Sources

• Point source
- Model with position and color
- Distant source = infinite distance away (parallel)

• Spotlight
- Restrict light from ideal point source

• Ambient light
- Same amount of light everywhere in scene
- Can model contribution of many sources and

reflecting surfaces

3

1
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Surface Types

• The smoother a surface, the more reflected light
is concentrated in the direction a perfect mirror
would reflected the light

• A very rough surface scatters light in all
directions

smooth surface rough surface
1
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Phong Shading Model

• A simple model that can be computed rapidly
• Has three components

- Diffuse
- Specular
- Ambient

• Uses four vectors
- To light source
- To viewer
- Normal
- Perfect reflector

1
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Ideal Reflector

• Normal is determined by local orientation
• Angle of incidence = angle of reflection
• The three vectors must be coplanar

r = 2 (l · n) n - l

1
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Lambertian Surface

• Perfectly diffuse reflector
• Light scattered equally in all directions
• Amount of light reflected is proportional to
the vertical component of incoming light

-  reflected light ~cos θi

- cos θi = l · n if vectors normalized
- There are also three coefficients, kr, kb, kg that

show how much of each color component is
reflected

1
8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Specular Surfaces

• Most surfaces are neither ideal diffusers nor
perfectly specular (ideal reflectors)

• Smooth surfaces show specular highlights due
to incoming light being reflected in directions
concentrated close to the direction of a perfect
reflection

specular
highlight

4

1
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modeling Specular Relections

• Phong proposed using a term that
dropped off as the angle between the
viewer and the ideal reflection increased

φ

Ir ~ ks I cosαφ

shininess coef

absorption coef
incoming intensity

reflected
intensity

2
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

The Shininess Coefficient

• Values of α between 100 and 200 correspond to
metals

• Values between 5 and 10 give surface that look
like plastic

cosα φ

φ 90 -90

2
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Ambient Light

• Ambient light is the result of multiple
interactions between (large) light sources
and the objects in the environment

• Amount and color depend on both the
color of the light(s) and the material
properties of the object

• Add ka Ia to diffuse and specular terms

reflection coef intensity of ambient light

2
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Distance Terms

• The light from a point source that reaches
a surface is inversely proportional to the
square of the distance between them

• We can add a factor of the
form 1/(a + bd +cd2) to
the diffuse and specular
terms
• The constant and linear terms soften the
effect of the point source

5

2
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light Sources

• In the Phong Model, we add the results
from each light source

• Each light source has separate diffuse,
specular, and ambient terms to allow for
maximum flexibility even though this form
does not have a physical justification

• Separate red, green and blue components
• Hence, 9 coefficients for each point source

-  Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab
2
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Material Properties

• Material properties match light source
properties

- Nine absorbtion coefficients
• kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab

- Shininess coefficient α

2
7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Adding up the Components

For each light source and each color
component, the Phong model can be
written (without the distance terms) as

I =kd Id l · n + ks Is (v · r)α + ka Ia

For each color component
we add contributions from
all light sources

2
8

Larry F. Hodges, G. Drew Kessler 11

Too Intense

With multiple light sources, it is easy to generated values of I > 1

One solution is to set the color value to be MIN(I, 1)

• An object can change color, saturating towards white
Ex. (0.1, 0.4, 0.8) + (0.5, 0.5, 0.5) = (0.6, 0.9, 1.0)

Another solution is to renormalize the intensities to vary from 0 to 1
if one I > 1.

• Requires calculating all I’s before rendering anything.

• No over-saturation, but image may be too bright, and contrasts a
little off.

Image-processing on image to be rendered (with original I’s) will
produce better results, but is costly.

2
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modified Phong Model

• The specular term in the Phong model is
problematic because it requires the
calculation of a new reflection vector and
view vector for each vertex

• Blinn suggested an approximation using
the halfway vector that is more efficient

3
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

The Halfway Vector

• h is normalized vector halfway between l
and v

h = (l + v)/ | l + v |

6

3
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using the halfway vector

• Replace (v · r)α by (n · h)β

•  β is chosen to match shineness
• Note that halfway angle is half of angle
between r and v if vectors are coplanar

• Resulting model is known as the modified
Phong or Blinn lighting model
- Specified in OpenGL standard

3
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

Only differences in
these teapots are
the parameters
in the modified
Phong model

3
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computation of Vectors

•  l and v are specified by the application
• Can compute r from l and n
• Problem is determining n
• For simple surfaces n can be determined, but
how we determine n differs depending on
underlying representation of surface

• OpenGL leaves determination of normal to
application

-  Exception for GLU quadrics and Bezier surfaces which
are deprecated

Computing Reflection Direction

• Angle of incidence = angle of reflection
• Normal, light direction and reflection
direction are coplaner

• Want all three to be unit length

3
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

€

r = 2(l • n)n − l

3
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Plane Normals

• Equation of plane: ax+by+cz+d = 0
• From Chapter 3 we know that plane is
determined by three points p0, p2, p3 or
normal n and p0

• Normal can be obtained by

n = (p2-p0) × (p1-p0)

3
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normal to Sphere

• Implicit function f(x,y,z)=0
• Normal given by gradient
• Sphere f(p)=p·p -1
•  n = [∂f/∂x, ∂f/∂y, ∂f/∂z]T=p

7

3
7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric Form

• For sphere

•  Tangent plane determined by vectors

• Normal given by cross product

x=x(u,v)=cos u sin v
y=y(u,v)=cos u cos v
z= z(u,v)=sin u

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T
∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T

n = ∂p/∂u × ∂p/∂v

3
8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Case

• We can compute parametric normals for
other simple cases

- Quadrics
- Parameteric polynomial surfaces

• Bezier surface patches (Chapter 10)

Shading in OpenGL

CS 537 Interactive Computer Graphics
Prof. David E. Breen

Department of Computer Science

3
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

4
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

• Introduce the OpenGL shading methods
- per vertex vs per fragment shading
- Where to carry out

• Discuss polygonal shading
- Flat
- Smooth
- Gouraud

4
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL shading

•  Need
-  Normals
-  Material properties
-  Lights

-  State-based shading functions have
been deprecated (glNormal, glMaterial,
glLight)

-  Get computed in application or send
attributes to shaders

4
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normalization

• Cosine terms in lighting calculations can be
computed using dot product

• Unit length vectors simplify calculation
• Usually we want to set the magnitudes to have
unit length but

- Length can be affected by transformations
- Note that scaling does not preserved length

• GLSL has a normalization function

8

4
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Specifying a Point Light Source

• For each light source, we can set its position and
an RGBA for the diffuse, specular, and ambient
components

vec4 diffuse0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 light0_pos =vec4(1.0, 2.0, 3,0, 1.0);

4
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Distance and Direction

• The source colors are specified in RGBA
• The position is given in homogeneous
coordinates

-  If w =1.0, we are specifying a finite location
-  If w =0.0, we are specifying a parallel source

with the given direction vector
• The coefficients in distance terms are usually
quadratic (1/(a+b*d+c*d*d)) where d is the
distance from the point being rendered to the
light source

4
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spotlights

• Derive from point source
- Direction
- Cutoff
- Attenuation Proportional to cosαφ

θ>Ùθ φ

4
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Global Ambient Light

• Ambient light depends on color of light
sources

- A red light in a white room will cause a red
ambient term that disappears when the light is
turned off

• A global ambient term is often helpful for
testing

4
7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Moving Light Sources

• Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

• Depending on where we place the position
(direction) setting function, we can

- Move the light source(s) with the object(s)
- Fix the object(s) and move the light source(s)
- Fix the light source(s) and move the object(s)
- Move the light source(s) and object(s) independently

4
8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Material Properties

• Material properties should match the terms in
the light model

• Reflectivities
• w component gives opacity (alpha)

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 diffuse = vec4(1.0, 0.8, 0.0, 1.0);
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);
GLfloat shine = 100.0

9

4
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Front and Back Faces

• Every face has a front and back
• For many objects, we never see the back face
so we donAût care how or if itAûs rendered

• If it matters, we can handle in shader

back faces not visible back faces visible

5
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Transparency

• Material properties are specified as RGBA
values

• The A value can be used to make the
surface translucent

• The default is that all surfaces are opaque
regardless of A

• Later we will enable blending and use this
feature

5
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygonal Shading

• In per vertex shading, shading calculations are
done for each vertex

- Vertex colors become vertex shades and can be
sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the
vertex shader and have it compute the shade

• By default, vertex shades are interpolated
across an object if passed to the fragment
shader as a varying variable (smooth shading)

• We can also use uniform variables to shade with
a single shade (flat shading)

5
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygon Normals

• Triangles have a single normal
- Shades at the vertices as computed by the

Phong model can almost be the same
-  Identical for a distant viewer (default) or if there

is no specular component
• Consider model of sphere
• Want different normals at
each vertex

5
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Smooth Shading

• We can set a new
normal at each vertex

• Easy for sphere model
-  If centered at origin n = p

• Now smooth shading
works

• Note silhouette edge

5
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Mesh Shading

• The previous example is not general
because we knew the normal at each
vertex analytically

• For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

10

5
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normal for Triangle

p0

p1

p2

n
plane n ·(p - p0) = 0

n = (p2 - p0) × (p1 - p0)

normalize n ← n/ |n|

p

Note that right-hand rule determines outward face

57

• Michael Garland http://
graphics.cs.uiuc.edu/~garland/

•  Triangle data
•  List of 3D vertices
•  List of references to vertex array

define faces (triangles)

•  Vertex indices begin at 1

Simple Mesh Format (SMF)

Calculating Normals

v -1 -1 -1
v 1 -1 -1
v -1 1 -1
v 1 1 -1
v -1 -1 1
v 1 -1 1
v -1 1 1
v 1 1 1
f 1 3 4
f 1 4 2
f 5 6 8
f 5 8 7
f 1 2 6
f 1 6 5
f 3 7 8
f 3 8 4
f 1 5 7
f 1 7 3
f 2 4 8
f 2 8 6

vertices

triangles

• Create vector structure (for
normals) same size as
vertex structure

• For each face
 Calculate unit normal
 Add to normals structure using

vertex indices
• Normalize all the normals

5
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Gouraud and Phong Shading

• Gouraud Shading
- Find average normal at each vertex (vertex normals)
- Compute modified Phong shading model at each

vertex
-  Interpolate vertex shades across each polygon

• Phong Shading
- Find averaged vertex normals
-  Interpolate vertex normals across polygon
- Compute modified Phong model at each fragment

6
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Comparison

• If the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show edges

• Phong shading requires much more work than
Gouraud shading

- Until recently not available in real time systems
- Now can be done using fragment shaders

• Both need data structures to represent meshes
so we can obtain vertex normals

Comparison

6
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

11

6
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Adding up the Components

For each light source and each color
component, the Phong model can be
written (without the distance terms) as

I =kd Id l · n + ks Is (v · r)α + ka Ia

For each color component
we add contributions from
all light sources

Vertex Lighting Shaders I
(Gouraud shading)

6
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// vertex shader
in vec3 vPosition;
in vec3 vNormal;
out vec3 color; //vertex shade

// Light and material properties. Light color * surface color
uniform vec3 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;
uniform mat4 Projection;
uniform vec3 LightPosition;
uniform float Shininess;

Vertex Lighting Shaders II

6
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void main()
{
 // Transform vertex position into eye coordinates
 vec3 pos = (ModelView * vec4(vPosition,1.0)).xyz;

 // Light defined in camera frame
 vec3 L = normalize(LightPosition - pos);
 vec3 E = normalize(-pos);
 vec3 H = normalize(L + E);

 // Transform vertex normal into eye coordinates
 vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

Vertex Lighting Shaders III

6
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// Compute terms in the illumination equation
 vec3 ambient = AmbientProduct;

 float dTerm = max(dot(L, N), 0.0);
 vec3 diffuse = dTerm*DiffuseProduct;
 float sTerm = pow(max(dot(N, H), 0.0), Shininess);
 vec3 specular = sTerm * SpecularProduct;
 if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
 gl_Position = Projection * ModelView * vPosition;

 color = ambient + diffuse + specular;
}

Vertex Lighting Shaders IV

6
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// fragment shader

in vec3 color;
out vec4 frag_color;

void main()
{
 frag_color = vec4(color, 1.0);
}

Fragment Lighting Shaders I
(Phong Shading)

6
7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// vertex shader
in vec3 vPosition;
in vec3 vNormal;

// output values that will be interpolated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform vec4 LightPosition;
uniform vec3 EyePosition;
uniform mat4 ModelView;
uniform mat4 Projection;

12

Fragment Lighting Shaders II

6
8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void main()
{
 fN = vNormal;
 fE = EyePosition - vPosition.xyz;

 // Light defined in world coordinates
 if (LightPosition.w != 0.0) {

 fL = LightPosition.xyz - vPosition.xyz;
 } else {
 fL = LightPosition.xyz;
 }
 gl_Position = Projection*ModelView*vPosition;
}

Fragment Lighting Shaders III

6
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// fragment shader

// per-fragment interpolated values from the vertex shader
in vec3 fN;
in vec3 fL;
in vec3 fE;
out frag_color;

uniform vec3 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;
uniform float Shininess;

Fragment Lighting Shaders IV

7
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void main()
{
 // Normalize the input lighting vectors

 vec3 N = normalize(fN);
 vec3 E = normalize(fE);
 vec3 L = normalize(fL);

 vec3 H = normalize(L + E);
 vec3 ambient = AmbientProduct;

Fragment Lighting Shaders V

7
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

 float dTerm = max(dot(L, N), 0.0);
 vec3 diffuse = dTerm*DiffuseProduct;

 float sTerm = pow(max(dot(N, H), 0.0), Shininess);
 vec3 specular = sTerm*SpecularProduct;

 // discard the specular highlight if the light's behind the vertex
 if(dot(L, N) < 0.0)

 specular = vec3(0.0, 0.0, 0.0);

 frag_color = vec4(ambient + diffuse + specular, 1.0);
}

HW6 Suggestions

• Write code for computing average surface
normal per vertex

• Use normal as color (don’t forget the
absolute value) and interpolate across
your model. This should look like your
HW5 output, but with interpolated colors

• Implement Phong shading model in vertex
shader with one light. This is produces
Gouraud shading algorithm.

7
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

HW6 Suggestions

• Light and specular color should be white
• First light should be in camera coordinates
and placed above camera (e.g. (0,3,0))

• Test with sphere model and shininess of
100. Should get good results with a
distinct specular highlight

• Try the lo-res and hi-res bunny models
and note the differences in the specular
highlights between the two.

7
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

13

HW6 Suggestions

• Next implement Phong shading algorithm
in fragment shader

• Be sure to use the same material and
lighting values for both shading algorithms

• Provide a way to switch between the two
• Provide interface for changing the object’s
material properties. The three choices
should be significantly different.

• Add a second light
7
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

HW6 Suggestions

• 2nd light will need its own transformation
• Allow user to move light
• Keep track of which coordinate system
you are calculating your surface colors in.
Is it in world coordinates or camera
coordinates?

7
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

