Shading

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

Objectives

• Learn to shade objects so their images appear three-dimensional
• Introduce the types of light-material interactions
• Build a simple reflection model—the Phong model—that can be used with real time graphics hardware

Why we need shading

• Suppose we build a model of a sphere using many polygons and color it with one color. We get something like

• But we want

Shading

• Why does the image of a real sphere look like

• Light-material interactions cause each point to have a different color or shade
• Need to consider
 - Light sources
 - Material properties
 - Location of viewer
 - Surface orientation

Scattering

• Light strikes A
 - Some scattered
 - Some absorbed
• Some of scattered light strikes B
 - Some scattered
 - Some absorbed
• Some of this scattered light strikes A and so on

Rendering Equation

• The infinite scattering and absorption of light can be described by the rendering equation
 - Cannot be solved in general
 - Ray tracing is a special case for perfectly reflecting surfaces
• Rendering equation is global and includes
 - Shadows
 - Multiple scattering from object to object
Global Effects

- translucent surface
- shadow
- multiple reflection

Local vs Global Rendering

- Correct shading requires a global calculation involving all objects and light sources
 - Incompatible with pipeline model which shades each polygon independently (local rendering)
- However, in computer graphics, especially real time graphics, we are happy if things “look right”
 - There are many techniques for approximating global effects

Light-Material Interaction

- Light that strikes an object is partially absorbed and partially scattered (reflected)
- The amount reflected determines the color and brightness of the object
 - A surface appears red under white light because the red component of the light is reflected and the rest is absorbed
- The reflected light is scattered in a manner that depends on the roughness and orientation of the surface

Light Sources

- General light sources are difficult to work with because we must integrate light coming from all points on the source

Simple Light Sources

- Point source
 - Model with position and color
 - Distant source = infinite distance away (parallel)
- Spotlight
 - Restrict light from ideal point source
- Ambient light
 - Same amount of light everywhere in scene
 - Can model contribution of many sources and reflecting surfaces

Surface Types

- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light
- A very rough surface scatters light in all directions

smooth surface rough surface
Phong Model
- A simple model that can be computed rapidly
- Has three components
 - Diffuse
 - Specular
 - Ambient
- Uses four vectors
 - To light source
 - To viewer
 - Normal
 - Perfect reflector

Ideal Reflector
- Normal is determined by local orientation
- Angle of incidence = angle of reflection
- The three vectors must be coplanar

Lambertian Surface
- Perfectly diffuse reflector
- Light scattered equally in all directions
- Amount of light reflected is proportional to the vertical component of incoming light
 - reflected light \(\sim \cos \theta_i \)
 - \(\cos \theta_i = I \cdot n \) if vectors normalized
 - There are also three coefficients, \(k_r, k_g, k_b \) that show how much of each color component is reflected

Lambert's Law for Diffuse Reflection
\[
I = I_r k_d \cos \theta
= I_r k_d (n \cdot L)
\]
- \(I_r \): resulting intensity
- \(I_s \): light source intensity
- \(k_d \): (diffuse) surface reflectance coefficient
- \(k_d \in [0, 1] \)
- \(\theta \): angle between normal & light direction

Specular Surfaces
- Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors)
- Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect reflection

Modeling Specular Reflections
- Phong proposed using a term that dropped off as the angle between the viewer and the ideal reflection increased

\[
I_r = I_s k_s \cos^\phi \theta
\]
- \(I_r \): reflected intensity
- \(k_s \): shininess coefficient
- \(I_s \): incoming intensity
- \(\phi \): absorption coefficient
The Shininess Coefficient

- Values of α between 100 and 200 correspond to metals
- Values between 5 and 10 give surface that look like plastic

$\cos^\alpha \phi$

Variable:
- α
- ϕ

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add $k_a I_a$ to diffuse and specular terms

Combined for the Final Result

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the form $1/(a + bd + cd^2)$ to the diffuse and specular terms
- The constant and linear terms soften the effect of the point source

Light Sources

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source
 - $I_{dr}, I_{dg}, I_{db}, I_{sr}, I_{sg}, I_{sb}, I_{ar}, I_{ag}, I_{ab}$
Material Properties

- Material properties match light source properties
 - Nine absorption coefficients: k_{dr}, k_{dg}, k_{db}, k_{sr}, k_{sg}, k_{sb}, k_{ar}, k_{ag}, k_{ab}
 - Shininess coefficient α

Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as

$$I = k_d I_d \cdot n + k_s I_s (v \cdot r)^\alpha + k_a I_a$$

For each color component we add contributions from all light sources.

To Intense

With multiple light sources, it is easy to generated values of $I > 1$

- One solution is to set the color value to be $\min(I, 1)$
 - An object can change color, saturating towards white
 - Ex. $(0.1, 0.4, 0.8) + (0.5, 0.5, 0.5) = (0.6, 0.9, 1.0)$

Another solution is to renormalize the intensities to vary from 0 to 1 if one $I > 1$.

- Requires calculating all I’s before rendering anything.
- No over-saturation, but image may be too bright and contrasts a little off.
- Image-processing on image to be rendered (with original I’s) will produce better results, but is costly.

Modified Phong Model

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- Blinn suggested an approximation using the halfway vector that is more efficient

Using the halfway vector

- Replace $(v \cdot r)^\alpha$ by $(n \cdot h)^\beta$
- β is chosen to match shininess
- Note that halfway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn lighting model
- Specified in OpenGL standard
Example

Only differences in these teapots are the parameters in the modified Phong model.

Computation of Vectors

- \(\mathbf{I} \) and \(\mathbf{v} \) are specified by the application
- Can compute \(\mathbf{r} \) from \(\mathbf{I} \) and \(\mathbf{n} \)
- Problem is determining \(\mathbf{n} \)
- For simple surfaces \(\mathbf{n} \) can be determined, but how we determine \(\mathbf{n} \) differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
 - Exception for GLU quadrics and Bezier surfaces which are deprecated

Computation of Vectors

- \(\mathbf{r} \) is obtained from \(\mathbf{I} \) and \(\mathbf{n} \)
- \(\mathbf{r} = 2(\mathbf{I} \cdot \mathbf{n})\mathbf{n} - \mathbf{I} \)

Plane Normals

- Equation of plane: \(ax + by + cz + d = 0 \)
- From Chapter 3 we know that plane is determined by three points \(\mathbf{p}_0, \mathbf{p}_2, \mathbf{p}_3 \) or normal \(\mathbf{n} \) and \(\mathbf{p}_0 \)
- Normal can be obtained by
 \[
 \mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)
 \]

Normal to Sphere

- Implicit function \(f(x,y,z)=0 \)
- Normal given by gradient
- Sphere \(f(\mathbf{p}) = \mathbf{p} \cdot \mathbf{p} - 1 \)
 \[
 \mathbf{n} = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]^T \mathbf{p}
 \]

Parametric Form

- For sphere
 \[
 x = r(u,v) \cos v \sin u \quad y = r(u,v) \sin v \quad z = r(u,v) \cos u
 \]
- Tangent plane determined by vectors
 \[
 \frac{\partial \mathbf{p}}{\partial u} = \left[\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right]^T
 \quad \frac{\partial \mathbf{p}}{\partial v} = \left[\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right]^T
 \]
- Normal given by cross product
 \[
 \mathbf{n} = \frac{\partial \mathbf{p}}{\partial u} \times \frac{\partial \mathbf{p}}{\partial v}
 \]
General Case

- We can compute parametric normals for other simple cases
 - Quadrics
 - Parametric polynomial surfaces
 - Bezier surface patches (Chapter 10)

Objectives

- Introduce the OpenGL shading methods
 - per vertex vs per fragment shading
 - Where to carry out
- Discuss polygonal shading
 - Flat
 - Smooth
 - Gouraud

OpenGL shading

- Need
 - Normals
 - Material properties
 - Lights
- State-based shading functions have been deprecated (glNormal, glMaterial, glLight)
 - Get computed in application or send attributes to shaders

Normalization

- Cosine terms in lighting calculations can be computed using dot product
- Unit length vectors simplify calculation
- Usually we want to set the magnitudes to have unit length but
 - Length can be affected by transformations
 - Note that scaling does not preserved length
- GLSL has a normalization function

Specifying a Point Light Source

- For each light source, we can set its position and an RGBA for the diffuse, specular, and ambient components

```cpp
vec4 diffuse0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 light0_pos = vec4(1.0, 2.0, 3.0, 1.0);
```
Distance and Direction

- The source colors are specified in RGBA
- The position is given in homogeneous coordinates
 - If \(w = 1.0 \), we are specifying a finite location
 - If \(w = 0.0 \), we are specifying a parallel source with the given direction vector
- The coefficients in distance terms are usually quadratic \(\frac{1}{(a+b+d+c*d^2)} \) where \(d \) is the distance from the point being rendered to the light source

Spotlights

- Derive from point source
 - Direction
 - Cutoff
 - Attenuation Proportional to \(\cos^\phi \)

Global Ambient Light

- Ambient light depends on color of light sources
 - A red light in a white room will cause a red ambient term that disappears when the light is turned off
- A global ambient term is often helpful for testing

Moving Light Sources

- Light sources are geometric objects whose positions or directions are affected by the model-view matrix
- Depending on where we place the position (direction) setting function, we can
 - Move the light source(s) with the object(s)
 - Fix the object(s) and move the light source(s)
 - Fix the light source(s) and move the object(s)
 - Move the light source(s) and object(s) independently

Material Properties

- Material properties should match the terms in the light model
- Reflectivities
- \(w \) component gives opacity

\[
\begin{align*}
\text{vec4 ambient} & = \text{vec4}(0.2, 0.2, 0.2, 1.0); \\
\text{vec4 diffuse} & = \text{vec4}(1.0, 0.8, 0.0, 1.0); \\
\text{vec4 specular} & = \text{vec4}(1.0, 1.0, 1.0, 1.0); \\
\text{GLfloat shine} & = 100.0;
\end{align*}
\]

Front and Back Faces

- Every face has a front and back
- For many objects, we never see the back face so we don't care how or if it's rendered
- If it matters, we can handle in shader

\begin{align*}
\text{back faces not visible} & \quad \text{back faces visible}
\end{align*}
Transparency

- Material properties are specified as RGBA values
- The A value can be used to make the surface translucent
- The default is that all surfaces are opaque regardless of A
- Later we will enable blending and use this feature

Polygonal Shading

- In per vertex shading, shading calculations are done for each vertex
 - Vertex colors become vertex shades and can be sent to the vertex shader as a vertex attribute
 - Alternately, we can send the parameters to the vertex shader and have it compute the shade
- By default, vertex shades are interpolated across an object if passed to the fragment shader as a varying variable (smooth shading)
- We can also use uniform variables to shade with a single shade (flat shading)

Polygon Normals

- Triangles have a single normal
 - Shades at the vertices as computed by the Phong model can almost be the same
 - Identical for a distant viewer (default) or if there is no specular component
- Consider model of sphere
- Want different normals at each vertex

Smooth Shading

- We can set a new normal at each vertex
- Easy for sphere model
 - If centered at origin \(n = \mathbf{p} \)
- Now smooth shading works
- Note silhouette edge

Mesh Shading

- The previous example is not general because we knew the normal at each vertex analytically
- For polygonal models, Gouraud proposed we use the average of the normals around a mesh vertex

\[
\mathbf{n} = \left(\frac{1}{4} \mathbf{n}_1 + \frac{1}{4} \mathbf{n}_2 + \frac{1}{4} \mathbf{n}_3 + \frac{1}{4} \mathbf{n}_4 \right) / |\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|
\]

Note that right-hand rule determines outward face

Normal for Triangle

- Plane \(\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0 \)
- \(\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0) \)
- Normalize \(\mathbf{n} \leftarrow \mathbf{n} / ||\mathbf{n}|| \)

Note that right-hand rule determines outward face
Simple Mesh Format (SMF)

- Michael Garland http://graphics.cs.uiuc.edu/~garland/
- Triangle data
- List of 3D vertices
- List of references to vertex array
- Define faces (triangles)
- Vertex indices begin at 1

```
#SMF 1.0
# triangles 5
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v 0.0 0.0 -3.0
v -2.0 0.0 2.0
v 1.0 1.0 1.0
v 0.0 0.0 0.0
v -1.0 -1.0 -1.0
v -1.0 1.0 -1.0
v 1.0 -1.0 1.0
v 1.0 1.0 1.0

f 1 3 4
f 1 4 2
f 5 6 8
f 5 8 7
f 1 2 6
f 1 6 5
f 3 7 8
f 3 8 4
f 1 5 7
f 1 7 3
f 2 4 8
f 2 8 6
```

Calculating Normals

- Create vector structure (for normals) same size as vertex structure
- For each face
 - Calculate unit normal
 - Add to normal structure using vertex indices
- Normalize all the normals
- $N(\alpha, \beta, \gamma) = \alpha N_a + \beta N_b + \gamma N_c$

Gouraud and Phong Shading

- Gouraud Shading
 - Find average normal at each vertex (vertex normals)
 - Apply modified Phong model at each vertex
 - Interpolate vertex shades across each polygon
- Phong shading
 - Find vertex normals
 - Interpolate vertex normals across edges
 - Interpolate edge normals across polygon
 - Apply modified Phong model at each fragment

Comparison

- If the polygon mesh approximates surfaces with high curvatures, Phong shading may look smooth while Gouraud shading may show edges
- Phong shading requires much more work than Gouraud shading
 - Until recently not available in real time systems
 - Now can be done using fragment shaders
- Both need data structures to represent meshes so we can obtain vertex normals

Comparison

- If the polygon mesh approximates surfaces with high curvatures, Phong shading may look smooth while Gouraud shading may show edges
- Phong shading requires much more work than Gouraud shading
 - Until recently not available in real time systems
 - Now can be done using fragment shaders
- Both need data structures to represent meshes so we can obtain vertex normals

Vertex Lighting Shaders I (Gouraud shading)

```cpp
// vertex shader
in vec3 vPosition;
in vec3 vNormal;
out vec3 color; // vertex shade

// Light and material properties. Light color * surface color
uniform vec3 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;
uniform mat4 Projection;
uniform vec3 LightPosition;
uniform float Shininess;
```
void main()
{
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vec4(vPosition,1.0)).xyz;

// Light defined in camera frame
vec3 L = normalize(LightPosition - pos);
vec3 E = normalize(-pos);
vec3 H = normalize(L + E);

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

// Compute terms in the illumination equation
vec3 ambient = AmbientProduct;
float Kd = max(dot(L, N), 0.0);
vec3 diffuse = Kd*DiffuseProduct;
float Ks = pow(max(dot(N, H), 0.0), Shininess);
vec3 specular = Ks * SpecularProduct;
if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl_Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;
}

// fragment shader
in vec3 color;
void main()
{
 gl_FragColor = vec4(color, 1.0);
}
void main()
{
 // Normalize the input lighting vectors
 vec3 N = normalize(fN);
 vec3 E = normalize(fE);
 vec3 L = normalize(fL);
 vec3 H = normalize(L + E);
 vec3 ambient = AmbientProduct;
 float Kd = max(dot(L, N), 0.0);
 vec3 diffuse = Kd*DiffuseProduct;
 float Ks = pow(max(dot(N, H), 0.0), Shininess);
 vec3 specular = Ks*SpecularProduct;
 // discard the specular highlight if the light's behind the vertex
 if(dot(L, N) < 0.0)
 specular = vec3(0.0, 0.0, 0.0);
 gl_FragColor = vec4(ambient + diffuse + specular, 1.0);
}