Hierarchical Modeling

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Examine the limitations of linear modeling
 - Symbols and instances
• Introduce hierarchical models
 - Articulated models
 - Robots
• Introduce Tree and DAG models
Instance Transformation

- Start with a prototype object (a symbol)
- Each appearance of the object in the model is an instance
 - Must scale, orient, position
 - Defines instance transformation
Symbol-Instance Table

Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Scale</th>
<th>Rotate</th>
<th>Translate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(s_x, s_y, s_z)</td>
<td>(\theta_x, \theta_y, \theta_z)</td>
<td>(d_x, d_y, d_z)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relationships in Car Model

- Symbol-instance table does not show relationships between parts of model
- Consider model of car
 - Chassis + 4 identical wheels
 - Two symbols

- Rate of forward motion determined by rotational speed of wheels
Structure Through Function Calls

car(speed)
{
 chassis()
 wheel(right_front);
 wheel(left_front);
 wheel(right_rear);
 wheel(left_rear);
}

• Fails to show relationships well
• Look at problem using a graph
Graphs

- Set of *nodes* and *edges* (*links*)
- Edge connects a pair of nodes
 - Directed or undirected
- *Cycle*: directed path that is a loop
Tree

- Graph in which each node (except the root) has exactly one parent node
 - May have multiple children
 - Leaf or terminal node: no children

root node

leaf node
Tree Model of Car

- Chassis
 - Right-front wheel
 - Left-front wheel
 - Right-rear wheel
 - Left-rear wheel
• If we use the fact that all the wheels are identical, we get a directed acyclic graph
 - Not much different than dealing with a tree
Modeling with Trees

• Must decide what information to place in nodes and what to put in edges

• Nodes
 - What to draw
 - Pointers to children

• Edges
 - May have information on incremental changes to transformation matrices (can also store in nodes)
Transformations to Change Coordinate Systems

- Issue: the world has many different relative frames of reference
- How do we transform among them?
- Example: CAD Assemblies & Animation Models
Transformations to Change Coordinate Systems

• 4 coordinate systems
 1 point \(P \)

\[
M_{1 \leftarrow 2} = T(4,2)
\]
\[
M_{2 \leftarrow 3} = T(2,3) \cdot S(0.5,0.5)
\]
\[
M_{3 \leftarrow 4} = T(6.7,1.8) \cdot R(45^\circ)
\]

\[
M_{i \leftarrow k} = M_{i \leftarrow j} \cdot M_{j \leftarrow k}
\]
Coordinate System Example

(1)

- Translate the House to the origin

\[M_{1 \leftarrow 2} = T(x_1, y_1) \]
\[M_{2 \leftarrow 1} = \left(M_{1 \leftarrow 2} \right)^{-1} \]
\[= T(-x_1, -y_1) \]

The matrix \(M_{ij} \) that maps points from coordinate system \(j \) to \(i \) is the inverse of the matrix \(M_{ji} \) that maps points from coordinate system \(j \) to coordinate system \(i \).
Coordinate System Example (2)

- Transformation Composition:

\[M_{5 \leftarrow 1} = M_{5 \leftarrow 4} \cdot M_{4 \leftarrow 3} \cdot M_{3 \leftarrow 2} \cdot M_{2 \leftarrow 1} \]
World Coordinates and Local Coordinates

- To move the tricycle, we need to know how all of its parts relate to the WCS
- Example: front wheel rotates on the ground wrt the front wheel’s z axis:

\[P^{(wo)} = T(\alpha r, 0, 0) \cdot R_z(\alpha) \cdot P^{(wh)} \]

Coordinates of \(P \) in wheel coordinate system:

\[P^{(wh)} = R_z(\alpha) \cdot P^{(wh)} \]
Robot Arm

robot arm

parts in their own coordinate systems
Articulated Models

- Robot arm is an example of an articulated model
 - Parts connected at joints
 - Can specify state of model by giving all joint angles
Relationships in Robot Arm

• Base rotates independently
 - Single angle determines position

• Lower arm attached to base
 - Its position depends on rotation of base
 - Must also translate relative to base and rotate about connecting joint

• Upper arm attached to lower arm
 - Its position depends on both base and lower arm
 - Must translate relative to lower arm and rotate about joint connecting to lower arm
Required Matrices

- Rotation of base: R_b
 - Apply $M = R_b$ to base
- Translate lower arm relative to base: T_{lu}
- Rotate lower arm around joint: R_{lu}
 - Apply $M = R_b T_{lu} R_{lu}$ to lower arm
- Translate upper arm relative to upper arm: T_{uu}
- Rotate upper arm around joint: R_{uu}
 - Apply $M = R_b T_{lu} R_{lu} T_{uu} R_{uu}$ to upper arm
mat4 ctm; // current transformation matrix

robot_arm() {
 ctm = RotateY(theta);
 base();
 ctm *= Translate(0.0, h1, 0.0);
 ctm *= RotateZ(phi);
 lower_arm();
 ctm *= Translate(0.0, h2, 0.0);
 ctm *= RotateZ(psi);
 upper_arm();
}
OpenGL Code for Robot

- At each level of hierarchy, calculate ctm matrix in application.
- Send matrix to shaders
- Draw geometry for one level of hierarchy
- Apply ctm matrix in shader
Tree Model of Robot

• Note code shows relationships between parts of model
 - Can change “look” of parts easily without altering relationships
• Simple example of tree model
• Want a general node structure for nodes
Possible Node Structure

- **Draw**
- **M**
- **Child**

- Code for drawing part or pointer to drawing function
- Linked list of pointers to children
- Matrix relating node to parent
Generalizations

• Need to deal with multiple children
 - How do we represent a more general tree?
 - How do we traverse such a data structure?

• Animation
 - How to use dynamically?
 - Can we create and delete nodes during execution?
Objectives

• Build a tree-structured model of a humanoid figure
• Examine various traversal strategies
• Build a generalized tree-model structure that is independent of the particular model
Humanoid Figure
Building the Model

• Can build a simple implementation using quadrics: ellipsoids and cylinders
• Access parts through functions
 - torso()
 - left_upper_arm()
• Matrices describe position of node with respect to its parent
 - \(M_{lla} \) positions left lower arm with respect to left upper arm
Tree with Matrices

Torso

- M_h
- M_{lua}
- M_{rua}
- M_{lul}
- M_{rul}

Head

- M_{lla}

Left-upper arm

Left-lower arm

Right-upper arm

Right-lower arm

Left-upper leg

Left-lower leg

Right-upper leg

Right-lower leg
Display and Traversal

• The position of the figure is determined by 11 joint angles (two for the head and one for each other part)

• Display of the tree requires a graph traversal
 - Visit each node once
 - Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation
Transformation Matrices

- There are 10 relevant matrices
 - M positions and orients entire figure through the torso which is the root node
 - M_h positions head with respect to torso
 - $M_{lua}, M_{rua}, M_{lul}, M_{rul}$ position arms and legs with respect to torso
 - $M_{lla}, M_{rla}, M_{lll}, M_{rll}$ position lower parts of limbs with respect to corresponding upper limbs
Stack-based Traversal

• Set model-view matrix to M and draw torso
• Set model-view matrix to MM_h and draw head
• For left-upper arm need MM_{lua} and so on
• Rather than recomputing MM_{lua} from scratch or using an inverse matrix, we can use the matrix stack to store M and other matrices as we traverse the tree
figure() {
 PushMatrix();
 torso();
 Rotate (...);
 head();
 PopMatrix();
 PushMatrix();
 Translate(...);
 Rotate(...);
 left_upper_arm();
 PopMatrix();
 PushMatrix();
 ...}

- save present currents xform matrix
- update ctm for head
- recover original ctm
- save it again
- update ctm for left upper arm
- recover and save original ctm again
- rest of code
Analysis

• The code describes a particular tree and a particular traversal strategy
 - Can we develop a more general approach?

• Note that the sample code does not include state changes, such as changes to colors
 - May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code
General Tree Data Structure

• Need a data structure to represent tree and an algorithm to traverse the tree
• We will use a *left-child right sibling* structure
 - Uses linked lists
 - Each node in data structure is two pointers
 - Left: linked list of children
 - Right: next node (i.e. siblings)
Left-Child Right-Sibling Tree

Diagram showing a tree structure with nodes labeled 'Root', 'Children', and 'Siblings'.
Tree node Structure

• At each node we need to store
 - Pointer to sibling
 - Pointer to child
 - Pointer to a function that draws the object represented by the node
 - Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
 • Represents changes going from parent to node
 • In OpenGL this matrix is a 1D array storing matrix by columns
C Definition of treenode

typedef struct treenode
{
 mat4 m;
 void (*f)();
 struct treenode *sibling;
 struct treenode *child;
} treenode;
treenode torso_node, head_node, lua_node, ... ;

```
torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = &head_node;

head_node.m = translate(0.0, TORSO_HEIGHT +0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[1])
             *RotateY(theta[2]);
head_node.f = head;
head_node.sibling = &lua_node;
head_node.child = NULL;
```
• The position of figure is determined by 11 joint angles stored in \(\text{theta}[11] \)
• Animate by changing the angles and redisplaying
• We form the required matrices using \texttt{Rotate} and \texttt{Translate}
 - Because the matrix is formed using the model-view matrix, we may want to first push original model-view matrix on matrix stack
void traverse(treenode* root)
{
 if(root==NULL) return;
 mvstack.push(ctm);
 ctm = ctm*root->m;
 root->f();
 if(root->child!=NULL) traverse(root->child);
 ctm = mvstack.pop();
 if(root->sibling!=NULL)
 traverse(root->sibling);
}

Preorder Traversal
Traversal Code & Matrices

- **figure()** called with CTM set
- **M_{fig}** defines figure’s place in world

```
figure() {
    PushMatrix()
    torso();
    Rotate (...);
    head();
    PopMatrix();
    PushMatrix();
    Translate(...);
    Rotate(...);
    left_upper_arm();
}
```

<table>
<thead>
<tr>
<th>Stack</th>
<th>CTM</th>
<th>M_{fig}</th>
<th>M_{fig}</th>
<th>M_{fig}</th>
<th>M_{fig}</th>
<th>M_{fig}</th>
</tr>
</thead>
<tbody>
<tr>
<td>figure()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M_{fig} defines the figure's place in the world.
Traversing Code & Matrices

```plaintext
PushMatrix();
Translate(...);
Rotate(...);
left_lower_arm();
PopMatrix();
PopMatrix();
PushMatrix();
Translate(...);
Rotate(...);
right_upper_arm();
    ...
    ...
Stack    CTM
M_{fig}M_{lua}    M_{fig}M_{lua}
M_{fig}    M_{fig}
Stack    CTM
M_{fig}M_{lua}    M_{fig}M_{lua}M_{lla}
Stack    CTM
M_{fig}    M_{fig}
Stack    CTM
M_{fig}    M_{fig}
Stack    CTM
M_{fig}    M_{fig}M_{rua}
```
Notes

• We must save current transformation matrix before multiplying it by node matrix
 - Updated matrix applies to children of node but not to siblings which contain their own matrices

• The traversal program applies to any left-child right-sibling tree
 - The particular tree is encoded in the definition of the individual nodes

• The order of traversal matters because of possible state changes in the functions
Dynamic Trees

• If we use pointers, the structure can be dynamic

```c
typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));
```

• Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution
Solid modeling introduces a mathematical theory of solid shape
- Domain of objects
- Set of operations on the domain of objects
- Representation that is
 • Unambiguous
 • Accurate
 • Unique
 • Compact
 • Efficient
Solid Objects and Operations

- Solids are point sets
 - Boundary and interior
- Point sets can be operated on with boolean algebra (union, intersect, etc)
Constructive Solid Geometry (CSG)

- A tree structure combining primitives via regularized boolean operations
- Primitives can be solids or half spaces
A Sequence of Boolean Operations

- Boolean operations
- Rigid transformations
The Induced CSG Tree
The Induced CSG Tree

- Can also be represented as a directed acyclic graph (DAG)
Issues with Constructive Solid Geometry

• Non-uniqueness
• Choice of primitives
• How to handle more complex modeling?
 - Sculpted surfaces? Deformable objects?
Issues with Constructive Solid Geometry

• Non-Uniqueness
 - There is more than one way to model the same artifact
 - Hard to tell if A and B are identical
Issues with CSG

• Minor changes in primitive objects greatly affect outcomes
• Shift up top solid face
Uses of Constructive Solid Geometry

- Found (basically) in every CAD system
- Elegant, conceptually and algorithmically appealing
- Good for
 - Rendering, ray tracing, simulation
 - BRL CAD