Objectives

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
- In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space \(p=(x,y,z) \)
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types
Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication $\mathbf{u} = \alpha \mathbf{v}$
 - Vector-vector addition: $\mathbf{u} + \mathbf{v}$
- Expressions such as
 \[\mathbf{v} = \mathbf{u} + 2\mathbf{w} - 3\mathbf{r} \]
 Make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude
- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition
 \[\mathbf{v} = \mathbf{P} - \mathbf{Q} \]
 \[\mathbf{P} = \mathbf{v} + \mathbf{Q} \]

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define
 - $1 \mathbf{P} = \mathbf{P}$
 - $0 \mathbf{P} = \mathbf{0}$ (zero vector)

Lines

- Consider all points of the form
 - $\mathbf{P}(\alpha) = \mathbf{P}_0 + \alpha \mathbf{d}$
 - Set of all points that pass through \mathbf{P}_0 in the direction of the vector \mathbf{d}
Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces

- Two-dimensional forms
 - Explicit: $y = mx + b$
 - Implicit: $ax + by + c = 0$
 - Parametric:

 $$
 \begin{align*}
 x(\alpha) &= \alpha x_0 + (1-\alpha)x_1 \\
 y(\alpha) &= \alpha y_0 + (1-\alpha)y_1
 \end{align*}
 $$

Rays and Line Segments

- If $\alpha \geq 0$, then $P(\alpha)$ is the ray leaving P_0 in the direction d
 - If we use two points to define v, then $P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$

 $$
 \begin{align*}
 \alpha R + (1-\alpha)Q
 \end{align*}
 $$
 - For $0 \leq \alpha \leq 1$ we get all the points on the line segment joining R and Q

Convexity

- An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

Affine Sums

- Consider the “sum” $P = \alpha_1 P_1 + \alpha_2 P_2 + \ldots + \alpha_n P_n$
 - If $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1$

 $$
 \begin{align*}
 \text{in which case we have the affine sum of the points } P_1, P_2, \ldots, P_n
 \end{align*}
 $$
 - If, in addition, $\alpha_i \geq 0$, we have the convex hull of P_1, P_2, \ldots, P_n

Convex Hull

- Smallest convex object containing P_1, P_2, \ldots, P_n
 - Formed by “shrink wrapping” points

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
 - Surfaces are formed from two-parameter functions $P(\alpha, \beta)$
 - Linear functions give planes and polygons
Planes

- A plane can be defined by a point and two vectors or by three points.

\[P(\alpha, \beta) = R + \alpha u + \beta v \]

\[P(\alpha, \beta) = R + \alpha(Q-R) + \beta(P-R) \]

Triangles

- Convex sum of P and Q
- Convex sum of S(\alpha) and R
- For \(0 \leq \alpha, \beta \leq 1\), we get all points in triangle.

Barycentric Coordinates

- Triangle is convex so any point inside can be represented as an affine sum.

\[P(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 P + \alpha_2 Q + \alpha_3 R \]

where

\[\alpha_1 + \alpha_2 + \alpha_3 = 1 \]

\[\alpha_3 \geq 0 \]

The representation is called the **barycentric coordinate** representation of P.

Normals

- Every plane has a vector \(n \) normal (perpendicular, orthogonal) to it.
- From point-two vector form \(P(\alpha, \beta) = R + \alpha u + \beta v \), we know we can use the cross product to find \(n = u \times v \) and the equivalent form \((P(\alpha)-P) \cdot n = 0 \).

Objectives

- Introduce concepts such as dimension and basis.
- Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces.
- Discuss change of frames and bases.
- Introduce homogeneous coordinates.
Linear Independence

- A set of vectors \(v_1, v_2, \ldots, v_n \) is **linearly independent** if
 \[\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \iff \alpha_1 = \alpha_2 = \ldots = 0 \]
- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the **dimension** of the space
- In an \(n \)-dimensional space, any set of \(n \) linearly independent vectors form a **basis** for the space
- Given a basis \(v_1, v_2, \ldots, v_n \), any vector \(v \) can be written as
 \[v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \]
 where the \(\{ \alpha_i \} \) are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can’t answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis \(v_1, v_2, \ldots, v_n \)
- A vector is written \(v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \)
- The list of scalars \(\{ \alpha_1, \alpha_2, \ldots, \alpha_n \} \) is the **representation** of \(v \) with respect to the given basis
- We can write the representation as a row or column array of scalars
 \[a = [\alpha_1 \alpha_2 \ldots \alpha_n]^T \]

Example

- \(v = 2v_1 + 3v_2 - 4v_3 \)
- \(a = [2 3 -4]^T \)
- Note that this representation is with respect to a particular basis
- For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

Coordinate Systems

- Which is correct?
- Both are because vectors have no fixed location
Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the origin, to the basis vectors to form a frame

\[P_0, v_1, v_2, v_3 \]

Representation in a Frame

- Frame determined by \((P_0, v_1, v_2, v_3)\)
- Within this frame, every vector can be written as
 \[v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \]
- Every point can be written as
 \[P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n \]

Confusing Points and Vectors

Consider the point and the vector

\[P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n \]
\[v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \]

They appear to have the similar representations

\[p = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \]
\[v = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \]

which confuses the point with the vector.

A vector has no position

Vector can be placed anywhere

point: fixed

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point \([x \ y \ z]^{T}\) is given as

\[p = \begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix}^{T} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}^{T} \]

We return to a three dimensional point (for \(w \neq 0\)) by

\[x' = x'/w \]
\[y' = y'/w \]
\[z' = z'/w \]

If \(w = 0\), the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

For \(w = 1\), the representation of a point is \([x \ y \ z \ 1]^{T}\)

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using \(4 \times 4\) matrices
 - Hardware pipeline works with \(4 \times 4\) dimensional representations
 - For orthographic viewing, we can maintain \(w = 0\) for vectors and \(w = 1\) for points
 - For perspective we need a perspective division
Change of Coordinate Systems

Consider two representations of the same vector with respect to two different bases. The representations are

\[\mathbf{a} = [\alpha_1, \alpha_2, \alpha_3] \]
\[\mathbf{b} = [\beta_1, \beta_2, \beta_3] \]

where

\[\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = [\alpha_1, \alpha_2, \alpha_3] [v_1, v_2, v_3]^T \]
\[= \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \beta_3 \mathbf{u}_3 = [\beta_1, \beta_2, \beta_3] [u_1, u_2, u_3]^T \]

The coefficients define a 3 x 3 matrix

\[\mathbf{M} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix} \]

and the bases can be related by

\[\mathbf{a} = \mathbf{M}^T \mathbf{b} \]

see text for numerical examples

Representing second basis in terms of first

Each of the basis vectors, \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \), are vectors that can be represented in terms of the first basis

\[\mathbf{u}_1 = \gamma_{11} \mathbf{v}_1 + \gamma_{12} \mathbf{v}_2 + \gamma_{13} \mathbf{v}_3 \]
\[\mathbf{u}_2 = \gamma_{21} \mathbf{v}_1 + \gamma_{22} \mathbf{v}_2 + \gamma_{23} \mathbf{v}_3 \]
\[\mathbf{u}_3 = \gamma_{31} \mathbf{v}_1 + \gamma_{32} \mathbf{v}_2 + \gamma_{33} \mathbf{v}_3 \]

Change of Frames

We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:

\((P_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \)
\((Q_0, \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) \)

Any point or vector can be represented in either frame

We can represent \(Q_0, \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \) in terms of \(P_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \)

Working with Representations

Within the two frames any point or vector has a representation of the same form

\[\mathbf{a} = [\alpha_1, \alpha_2, \alpha_3] \text{ in the first frame} \]
\[\mathbf{b} = [\beta_1, \beta_2, \beta_3] \text{ in the second frame} \]

where \(\alpha_4 = \beta_4 = 1 \) for points and \(\alpha_4 = \beta_4 = 0 \) for vectors and

\[\mathbf{a} = \mathbf{M}^T \mathbf{b} \]

The matrix \(\mathbf{M} \) is 4 x 4 and specifies an affine transformation in homogeneous coordinates
The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same ($M = I$)

Moving the Camera

If objects are on both sides of $z=0$, we must move camera frame

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$