Objectives

• Introduce simple data structures for building polygonal models
 - Vertex lists
 - Edge lists

Representation of 3D Transformations

• Z axis represents depth
• Right Handed System
 - When looking “down” at the origin, positive rotation is CCW
• Left Handed System
 - When looking “down”, positive rotation is in CW
 - More natural interpretation for displays, big z means “far”

Representing a Mesh

• Consider a mesh
 - There are 8 nodes and 12 edges
 - 5 interior polygons
 - 6 interior (shared) edges
 - Each vertex has a location \(v_i = (x_i, y_i, z_i) \)

Simple Representation

• Define each polygon by the geometric locations of its vertices
• Leads to OpenGL code such as

  ```
  vertex[i] = vec3(x1, y1, z1);
  vertex[i+1] = vec3(x6, y6, z6);
  vertex[i+2] = vec3(x7, y7, z7);
  i+=3;
  ```

• Inefficient and unstructured
 - Consider moving a vertex to a new location
 - Must search for all occurrences

Inward and Outward Facing Polygons

• The order \(\{v_1, v_2, v_3\} \) and \(\{v_4, v_5, v_6\} \) are equivalent in that the same polygon will be rendered by OpenGL but the order \(\{v_1, v_2, v_3\} \) is different
• The first two describe outwardly facing polygons
• Use the right-hand rule = counter-clockwise encirclement of outward-pointing normal
• OpenGL can treat inward and outward facing polygons differently
Geometry vs Topology

• Generally it is a good idea to look for data structures that separate the geometry from the topology
 - Geometry: locations of the vertices
 - Topology: organization of the vertices and edges
 - Example: a polygon is an ordered list of vertices with an edge connecting successive pairs of vertices and the last to the first
 - Topology holds even if geometry changes

Vertex Lists

• Put the geometry in an array
• Use pointers from the vertices into this array
• Introduce a polygon list

Shared Edges

• Vertex lists will draw filled polygons correctly but if we draw the polygon by its edges, shared edges are drawn twice
• Can store mesh by edge list

Edge List

• Note polygons are not represented

Rotating Cube

• Full example
• Model Colored Cube
• Use 3 button mouse to change direction of rotation
• Use idle function to increment angle of rotation

Draw cube from faces

void colorcube()
{
 quad(1, 0, 3, 2, 1);
 quad(2, 3, 7, 6, 2);
 quad(3, 0, 4, 7, 3);
 quad(6, 5, 1, 2, 4);
 quad(4, 5, 6, 7 , 5);
 quad(5, 4, 0, 1, 6);
}

Note that vertices are ordered so that we obtain correct outward facing normals
Cube Vertices

// Vertices of a unit cube centered at origin
// sides aligned with axes
point4 vertices[8] = {
 point4(-0.5, -0.5, 0.5, 1.0), // front
 point4(-0.5, 0.5, 0.5, 1.0), // top
 point4(0.5, 0.5, 0.5, 1.0), // right
 point4(0.5, -0.5, 0.5, 1.0), // back
 point4(-0.5, -0.5, -0.5, 1.0), // bottom
 point4(-0.5, 0.5, -0.5, 1.0), // left
 point4(0.5, 0.5, -0.5, 1.0), // behind
 point4(0.5, -0.5, -0.5, 1.0) // inside
};

Colors

// RGBA colors
color4 vertex_colors[8] = {
 color4(0.0, 0.0, 0.0, 1.0), // black
 color4(1.0, 0.0, 0.0, 1.0), // red
 color4(1.0, 1.0, 0.0, 1.0), // yellow
 color4(0.0, 1.0, 0.0, 1.0), // green
 color4(0.0, 0.0, 1.0, 1.0), // blue
 color4(1.0, 0.0, 1.0, 1.0), // magenta
 color4(1.0, 1.0, 1.0, 1.0), // white
 color4(0.0, 1.0, 1.0, 1.0) // cyan
};

Quad Function

// quad generates two triangles for each face and assigns colors
// to the vertices
int Index = 0;
void quad(int a, int b, int c, int d)
{
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[b]; points[Index] = vertices[b]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[d]; points[Index] = vertices[d]; Index++;
}

Color Cube

// generate 12 triangles: 36 vertices and 36 colors
void colorcube()
{
 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);
}

Initialization I

void init()
{
 colorcube();
 // Create a vertex array object
 GLuint vao;
 glGenVertexArrays (1, &vao);
 glBindVertexArray (vao);
}

Initialization II

// Create and initialize a buffer object
GLuint buffer;
 glGenBuffers(1, &buffer);
 glBindBuffer(GL_ARRAY_BUFFER, buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(points) + sizeof(colors), NULL, GL_STATIC_DRAW);
 glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(points), points);
 glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), sizeof(colors), colors);
 // Load shaders and use the resulting shader program
 GLuint program = InitShader("vshdrcube.glsl", "fshdrcube.glsl");
 glUseProgram(program);
Initialization III

```c
// set up vertex arrays
GLuint vPosition = glGetAttribLocation( program, "vPosition" );
glEnableVertexAttribArray( vPosition );
glVertexAttribPointer( vPosition, 4, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET(0) );

GLuint vColor = glGetAttribLocation( program, "vColor" );
glEnableVertexAttribArray( vColor );
glVertexAttribPointer( vColor, 4, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET(sizeof(points)) );

Glint thetaLoc = glGetUniformLocation( program, "theta" );
```

Display Callback

```c
void
display( void )
{
    glClear( GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT );

    glUniform3fv( thetaLoc, 1, theta );
    glDrawArrays( GL_TRIANGLES, 0, NumVertices );
    glutSwapBuffers();
}
```

OpenGL code

```
• Remember that matrices are column
major order in GLSL, so …

  Transpose your matrices when sending them to the shaders!

  glUniformMatrix4fv(matrix_loc, 1, GL_TRUE,
model_view);
```

Mouse Callback

```c
void
mouse( int button, int state, int x, int y )
{
    if ( state == GLUT_DOWN ) {
        switch( button ) {
            case GLUT_LEFT_BUTTON:    axis = Xaxis;  break;
            case GLUT_MIDDLE_BUTTON:  axis = Yaxis;  break;
            case GLUT_RIGHT_BUTTON:   axis = Zaxis;  break;
        }
    }
}
```

Idle Callback

```c
void
idle( void )
{
    theta[axis] += 0.01;
    if ( theta[axis] > 360.0 ) {
        theta[axis] = 360.0;
    }
    glutPostRedisplay();
}
```

Transforming Each Vertex (deprecated)

```
attribute vec4 vPosition, vColor;
varying vec4 color;
uniform mat4 rot;

void main()
{
    gl_Position = rot * vPosition;
    color = vColor;
}
```
Objectives

- Introduce the classical views
- Compare and contrast image formation by computer with how images have been formed by architects, artists, and engineers
- Learn the benefits and drawbacks of each type of view

Classical Viewing

- Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface
- Classical views are based on the relationship among these elements
 - The viewer picks up the object and orients it how she would like to see it
- Each object is assumed to be constructed from flat principal faces
 - Buildings, polyhedra, manufactured objects

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
 - Converge at a center of projection
 - Are parallel
- Such projections preserve lines
 - But not necessarily angles
- Nonplanar projections are needed for applications such as map construction

Classical Projections

- Computer graphics treats all projections the same and implements them with a single pipeline
- Classical viewing developed different techniques for drawing each type of projection
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing
Taxonomy of Planar Geometric Projections

- **parallel**
 - multiview
 - orthographic
- **perspective**
 - 1 point
 - 2 point
 - 3 point

Perspective Projection

- Projector
- Object
- Projection plane
- COP

Parallel Projection

- Object
- Projector
- DOP
- Projection plane

Orthographic Projection

- Projectors are orthogonal to projection surface

Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views
- Isometric (not multiview orthographic view)

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric view in CAD and architecture, we often display three multiviews plus isometric view.
Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of a corner of a projected cube are the same

none: trimetric
two: dimetric
three: isometric

Types of Axonometric Projections

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Can see three principal faces of a box-like object
- Some optical illusions possible
 - Parallel lines appear to diverge
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

- Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see “around” side

- In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Perspective Projection

Projectors converge at center of projection
Vanishing Points

- Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the vanishing point).
- Drawing simple perspectives by hand uses these vanishing point(s).

Three-Point Perspective

- No principal face parallel to projection plane.
- Three vanishing points for cube.

Two-Point Perspective

- On principal direction parallel to projection plane.
- Two vanishing points for cube.

One-Point Perspective

- One principal face parallel to projection plane.
- One vanishing point for cube.

Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution)
 - Looks realistic
- Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not more difficult by computer)

Taxonomy of Planar Geometric Projections

planar geometric projections

parallel perspective

multiview axonometric
orthographic

isometric dimetric trimetric

1 point 2 point 3 point