Building Models

CS 537 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Introduce simple data structures for building polygonal models
 - Vertex lists
 - Edge lists
Representation of 3D Transformations

• Z axis represents depth
• Right Handed System
 - When looking “down” at the origin, positive rotation is CCW
• Left Handed System
 - When looking “down”, positive rotation is in CW
 - More natural interpretation for displays, big z means “far”
Representing a Mesh

- Consider a mesh

- There are 8 nodes and 12 edges
 - 5 interior polygons
 - 6 interior (shared) edges

- Each vertex has a location \(v_i = (x_i, y_i, z_i) \)
Simple Representation

• Define each polygon by the geometric locations of its vertices
• Leads to OpenGL code such as

```cpp
vertex[i] = vec3(x1, y1, z1);
vertex[i+1] = vec3(x6, y6, z6);
vertex[i+2] = vec3(x7, y7, z7);
i+=3;
```

• Inefficient and unstructured
 - Consider moving a vertex to a new location
 - Must search for all occurrences
Inward and Outward Facing Polygons

- The order \(\{v_1, v_6, v_7\} \) and \(\{v_6, v_7, v_1\} \) are equivalent in that the same polygon will be rendered by OpenGL but the order \(\{v_1, v_7, v_6\} \) is different.
- The first two describe outwardly facing polygons.
- Use the right-hand rule = counter-clockwise encirclement of outward-pointing normal.
- OpenGL can treat inward and outward facing polygons differently.

Geometry vs Topology

- Generally it is a good idea to look for data structures that separate the geometry from the topology
 - Geometry: locations of the vertices
 - Topology: organization of the vertices and edges
 - Example: a polygon is an ordered list of vertices with an edge connecting successive pairs of vertices and the last to the first
 - Topology holds even if geometry changes

Vertex Lists

- Put the geometry in an array
- Use pointers from the vertices into this array
- Introduce a polygon list

\[\begin{array}{cccc}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
 x_4 & y_4 & z_4 \\
 x_5 & y_5 & z_5 \\
 x_6 & y_6 & z_6 \\
 x_7 & y_7 & z_7 \\
 x_8 & y_8 & z_8 \\
\end{array} \]
Shared Edges

- Vertex lists will draw filled polygons correctly but if we draw the polygon by its edges, shared edges are drawn twice.

- Can store mesh by *edge list*.
Note polygons are not represented.
Rotating Cube

- Full example
- Model Colored Cube
- Use 3 button mouse to change direction of rotation
- Use idle function to increment angle of rotation
Draw cube from faces

void colorcube()
{
 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);
}

Note that vertices are ordered so that we obtain correct outward facing normals.
Cube Vertices

// Vertices of a unit cube centered at origin
// sides aligned with axes

point4 vertices[8] = {
 point4(-0.5, -0.5, 0.5, 1.0),
 point4(-0.5, 0.5, 0.5, 1.0),
 point4(0.5, 0.5, 0.5, 1.0),
 point4(0.5, -0.5, 0.5, 1.0),
 point4(-0.5, -0.5, -0.5, 1.0),
 point4(-0.5, 0.5, -0.5, 1.0),
 point4(0.5, 0.5, -0.5, 1.0),
 point4(0.5, -0.5, -0.5, 1.0)
};
Colors

// RGBA colors
color4 vertex_colors[8] = {
 color4(0.0, 0.0, 0.0, 1.0), // black
 color4(1.0, 0.0, 0.0, 1.0), // red
 color4(1.0, 1.0, 0.0, 1.0), // yellow
 color4(0.0, 1.0, 0.0, 1.0), // green
 color4(0.0, 0.0, 1.0, 1.0), // blue
 color4(1.0, 0.0, 1.0, 1.0), // magenta
 color4(1.0, 1.0, 1.0, 1.0), // white
 color4(0.0, 1.0, 1.0, 1.0) // cyan
};
// quad generates two triangles for each face and assigns colors
to the vertices
int Index = 0;
void quad(int a, int b, int c, int d)
{
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[b]; points[Index] = vertices[b]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[d]; points[Index] = vertices[d]; Index++;
}
// generate 12 triangles: 36 vertices and 36 colors
void colorcube()
{
 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);
}
void
init()
{
 colorcube();

 // Create a vertex array object

 GLuint vao;
 glGenVertexArrays (1, &vao);
 glBindVertexArray (vao);
// Create and initialize a buffer object
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(points) +
 sizeof(colors), NULL, GL_STATIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0,
 sizeof(points), points);
glBufferSubData(GL_ARRAY_BUFFER, sizeof(points),
 sizeof(colors), colors);

// Load shaders and use the resulting shader program
GLuint program = InitShader("vshdrcube.glsl", "fshdrcube.glsl");
glUseProgram(program);
// set up vertex arrays
GLuint vPosition = glGetAttribLocation(program, "vPosition");
glEnableVertexAttribArray(vPosition);
glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET(0));

GLuint vColor = glGetAttribLocation(program, "vColor");
glEnableVertexAttribArray(vColor);
glVertexAttribPointer(vColor, 4, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET(sizeof(points)));

Glint thetaLoc = glGetUniformLocation(program, "theta");
void
display(void)
{
 glClear(GL_COLOR_BUFFER_BIT
 | GL_DEPTH_BUFFER_BIT);

 glUniform3fv(thetaLoc, 1, theta);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);

 glutSwapBuffers();
}
OpenGL code

- Remember that matrices are column major order in GLSL, so …

Transpose your matrices when sending them to the shaders!

```c
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE,
                     model_view);
```
void mouse(int button, int state, int x, int y)
{
 if (state == GLUT_DOWN) {
 switch(button) {
 case GLUT_LEFT_BUTTON: axis = Xaxis; break;
 case GLUT_MIDDLE_BUTTON: axis = Yaxis; break;
 case GLUT_RIGHT_BUTTON: axis = Zaxis; break;
 }
 }
}
void
idle(void)
{
 theta[axis] += 0.01;

 if (theta[axis] > 360.0) {
 theta[axis] -= 360.0;
 }

 glutPostRedisplay();
}
Transforming Each Vertex

in vec4 vPosition, vColor;
out vec4 color;
uniform mat4 rot;

void main()
{
 gl_Position = rot * vPosition;
 color = vColor;
}
The default viewing volume is a box centered at the origin with sides of length 2

• (-1, -1, -1) → (1, 1, 1)

• All geometry in box is parallel-projected into the z=0 plane!

• Then rendered
Go to Assignment 4
Assignment 4 Suggestions

• Define cube geometry and color in init()

• Keyboard callback
 - Figures out how to change transformation values
 - Calculates new transformation matrix, that includes scale, rotation and translation, and sends it the GPU via a uniform variable
 - Calls glutPostRedisplay()

• Display function draws cube

• Vertex shader applies transformation matrix to vertices
Classical Viewing
Objectives

• Introduce the classical views
• Compare and contrast image formation by computer with how images have been formed by architects, artists, and engineers
• Learn the benefits and drawbacks of each type of view
Classical Viewing

• Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface

• Classical views are based on the relationship among these elements
 - The viewer picks up the object and orients it how she would like to see it

• Each object is assumed to be constructed from flat principal faces
 - Buildings, polyhedra, manufactured objects
Planar Geometric Projections

• Standard projections project onto a plane
• Projectors are lines that either
 - converge at a center of projection
 - are parallel
• Such projections preserve lines
 - but not necessarily angles
• Nonplanar projections are needed for applications such as map construction
Classical Projections

Front elevation

Elevation oblique

Plan oblique

Isometric

One-point perspective

Three-point perspective
Perspective vs Parallel

• Computer graphics treats all projections the same and implements them with a single pipeline
• Classical viewing developed different techniques for drawing each type of projection
• Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing
Taxonomy of Planar Geometric Projections

- planar geometric projections
 - parallel
 - orthographic
 - axonometric
 - isometric
 - dimetric
 - trimetric
 - perspective
 - 1 point
 - 2 point
 - 3 point
Perspective Projection

Object

Projector

Projection plane

COP
Parallel Projection

Object

Projector

Projection plane

DOP
Orthographic Projection

Projectors are orthogonal to projection surface
Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views

isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric
Advantages and Disadvantages

• Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 • Building plans
 • Manuals

• Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric
Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of a corner of a projected cube are the same

none: trimetric
two: dimetric
three: isometric
Types of Axonometric Projections

Dimetric

Trimetric

Isometric
Advantages and Disadvantages

• Lines are scaled (*foreshortened*) but can find scaling factors
• Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse
• Can see three principal faces of a box-like object
• Some optical illusions possible
 - Parallel lines appear to diverge
• Does not look real because far objects are scaled the same as near objects
• Used in CAD applications
Oblique Projection

Arbitrary relationship between projectors and projection plane
Advantages and Disadvantages

• Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique

• Angles in faces parallel to projection plane are preserved while we can still see “around” side

• In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)
Perspective Projection

Projectors converge at center of projection
Vanishing Points

• Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the *vanishing point*)

• Drawing simple perspectives by hand uses these vanishing point(s)
Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube
Two-Point Perspective

- One principal direction parallel to projection plane
- Two vanishing points for cube
One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube
Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (*diminution*)
 - Looks realistic
- Equal distances along a line are not projected into equal distances (*nonuniform foreshortening*)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not more difficult by computer)
Taxonomy of Planar Geometric Projections

- **Parallel**
 - Multiview
 - Orthographic
 - Axonometric
 - Isometric
 - Dimetric
 - Trimetric

- **Perspective**
 - 1 point
 - 2 point
 - 3 point