Computer Viewing

CS 537 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Introduce the mathematics of projection
• Introduce OpenGL viewing functions
• Look at alternate viewing APIs
Computer Viewing

- There are three aspects of the viewing process, all of which should be implemented in the pipeline,
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Clipping
 - Setting the view volume
The OpenGL Camera

• In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity

• The camera is located at origin and points in the negative z direction

• OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

Default projection is orthographic
Moving the Camera Frame

• If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 • Translate the camera frame
 - Move the objects in the negative z direction
 • Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation \(\text{Translate}(0.0,0.0,0.0,-d); \)
 \[-d > 0\]
Moving Camera back from Origin

frames after translation by \(-d\)
\(d > 0\)

default frames

Moving Camera back from Origin

frames after translation by \(-d\), \(d > 0\)

default frames

World is actually being moved relative to camera frame.
Moving the Camera

• We can move the camera to any desired position by a sequence of rotations and translations

• Example: side view
 - Rotate the scene
 - Move it away from origin
 - Model-view matrix $C = TR$
OpenGL code

• Remember that last transformation specified is first to be applied

```c
// Using mat.h

mat4 t = Translate(0.0, 0.0, -d);
mat4 ry = RotateY(-90.0);
mat4 m = t*ry;
```

This is code for moving world frame relative to camera frame. It is the inverse of the desired camera movement.
The LookAt Function

• The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface

• Note the need for setting an up direction
 - Should not be parallel to look-at direction

• Replaced by LookAt() in mat.h
 - Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes

```cpp
mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);
```
LookAt(eye, at, up)

- eye – location of camera
- at – look-at point
- up – up vector
Other Viewing APIs

• The LookAt function is only one possible API for positioning the camera
• Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Projections and Normalization

• The default projection in the eye (camera) frame is orthographic

• For points within the default view volume

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]

• Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
Homogeneous Coordinate Representation

default orthographic projection

\[\begin{align*}
 x_p &= x \\
 y_p &= y \\
 z_p &= 0 \\
 w_p &= 1
\end{align*} \]

\[\mathbf{p}_p = \mathbf{M} \mathbf{p} \]

\[\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

In practice, we can let \(\mathbf{M} = \mathbf{I} \) and set the \(z \) term to zero later.
Simple Perspective

- Center of projection at the origin
- Projection plane $z = d, d < 0$
Perspective Equations

Consider top and side views

\[x_p = \frac{x}{z/d} \]
\[y_p = \frac{y}{z/d} \]
\[z_p = d \]
Homogeneous Coordinate Form

consider \(q = Mp \) where

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]

\[
q = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \Rightarrow \quad p = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} x/(z/d) \\ y/(z/d) \\ d \\ 1 \end{bmatrix}
\]
Perspective Division

• However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
• This *perspective division* yields

$$x_p = \frac{x}{z/d} \quad y_p = \frac{y}{z/d} \quad z_p = d$$

the desired perspective equations
• We will consider the corresponding clipping volume with mat.h functions that are equivalent to deprecated OpenGL functions
OpenGL Orthogonal Viewing

\texttt{Ortho(left,right,bottom,top,near,far)}

\textit{near} and \textit{far} measured \textit{from} camera

View volume specified in camera coordinates
OpenGL Perspective

Frustum(left, right, bottom, top, near, far)

Specified in camera coordinates
Using Field of View

• With Frustum it is often difficult to get the desired view
• Perspective(fovy, aspect, near, far) often provides a better interface

\[
\text{aspect} = \frac{w}{h}
\]
Projection Matrices

CS 537 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Derive the projection matrices used for standard OpenGL projections
• Introduce oblique projections
• Introduce projection normalization
Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.

• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.
Pipeline View

modelview transformation → projection transformation → perspective division

4D → 3D

nonsingular

clipping → projection

against default cube

3D → 2D
Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)

• Normalization lets us clip against simple cube regardless of type of projection

• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
Orthographic Normalization

\[\text{Ortho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]

normalization \(\Rightarrow\) find transformation to convert specified clipping volume to default

\[(\text{right}, \text{top}, \text{far}) \]

\[(1, 1, -1) \]

\[(\text{left}, \text{bottom}, -\text{near}) \]

\[(-1, -1, 1) \]

left < right bottom < top near < far
Orthographic Matrix

• Two steps
 - Move center to origin
 \[T(-\frac{\text{left}+\text{right}}{2}, -\frac{\text{bottom}+\text{top}}{2}, \frac{\text{near}+\text{far}}{2}) \]
 - Scale to have sides of length 2
 \[S\left(\frac{2}{\text{left-right}}, \frac{2}{\text{top-bottom}}, \frac{2}{\text{near-far}}\right) \]

\[
P = ST = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & -\frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} \\
0 & 0 & \frac{2}{\text{near} - \text{far}} & \frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Final Projection

• Set $z = 0$

• Equivalent to the homogeneous coordinate transformation

$$M_{\text{orth}} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

• Hence, general orthographic projection in 4D is

$$P = M_{\text{orth}} ST$$
Oblique Projections

• The OpenGL projection functions cannot produce general parallel projections such as

• However if we look at the example of the cube it appears that the cube has been sheared

• Oblique Projection = Shear + Orthographic Projection
General Shear

Back clipping plane
Front clipping plane
Projection plane

Top view

Side view

Shear Matrix

xy shear (z values unchanged)

$$H(\theta, \phi) = \begin{bmatrix} 1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projection matrix

$$P = M_{\text{orth}} H(\theta, \phi)$$

General case:

$$P = M_{\text{orth}} \text{STH}(\theta, \phi)$$
Equivalency
Effect on Clipping

- The projection matrix \(P = \text{STH} \) transforms the original clipping volume to the default clipping volume.

Diagram:
- DOP
- Near plane
- Far plane
- Object
- Top view
- Clipping volume
- Distorted object (projects correctly)
- \(x = -1 \)
- \(z = 1 \)
- \(x = 1 \)
- \(z = -1 \)
Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at $z = -1$, and a 90 degree field of view determined by the planes $x = \pm z, y = \pm z$.
Perspective Matrices

Simple projection matrix in homogeneous coordinates

\[M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{bmatrix} \]

\[x' = x \quad x' = -x/z \]
\[y' = y \quad y' = -y/z \]
\[z' = z \quad z' = -1 \]
\[w' = -z \]

Note that this matrix is independent of the far clipping plane
Generalization

\[
N = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
x' = x \\
y' = y \\
z' = \alpha z + \beta \\
w' = -z
\]

after perspective division, the point \((x, y, z, 1)\) goes to

\[
x'' = -x/z \\
y'' = -y/z \\
z'' = -(\alpha + \beta/z)
\]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\)
Picking α and β

If we pick

\[\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}\]
\[\beta = \frac{2\text{near} \times \text{far}}{\text{near} - \text{far}}\]

the near plane is mapped to $z = -1$
the far plane is mapped to $z = 1$
and the sides are mapped to $x = \pm 1, y = \pm 1$

Hence the new clipping volume is the default clipping volume

\[z' = -(\alpha + \beta/z)\]
Normalization Transformation

original clipping volume

original object

new clipping volume

distorted object projects correctly

$z = -x$

$z = x$

$z = -\text{far}$

$z = -\text{near}$

$z = 1$

$x = -1$

$x = 1$

$z = -1$
Normalization and Hidden-Surface Removal

• Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' > z_2'$.

• Thus hidden surface removal works if we first apply the normalization transformation.

• However, the formula $z'' = -(\alpha + \beta/z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small.
OpenGL Perspective

- Frustum allows for an unsymmetric viewing frustum (although Perspective does not)

Frustum(left, right, bottom, top, near, far)

- left < right
- bottom < top
- near < far
- near & far positive

OpenGL Perspective

- **Perspective** provides less flexible, but more intuitive perspective viewing

 \[\text{Perspective}(\text{fov}, \text{aspect}, \text{near}, \text{far}); \]

- Field of view in angles
- aspect: w/h
- near < far, both positive
The normalization in Frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation.

\[P = \text{NSH} \]

our previously defined perspective matrix shear and scale
Why do we do it this way?

• Normalization allows for a single pipeline for both perspective and orthogonal viewing

• We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading

• We simplify clipping
Viewing OpenGL Code

• It’s not too bad, thanks to Ed Angel
• In application

\[
\text{model_view} = \text{LookAt(eye, at, up)};
\]
\[
\text{projection} = \text{Ortho(left, right, bottom, top, near, far)};
\]

or

\[
\text{projection} = \text{Perspective(fov, aspect, near, far)};
\]

• In vertex shader

\[
\text{gl_Position} = \text{projection*model_view*vPosition};
\]
OpenGL code

• Remember that matrices are column major order in GLSL, so …

Transpose your matrices when sending them to the shaders!

```c
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE,
                     model_view);
```
Simple Mesh Format (SMF)

- Triangle data
- List of 3D vertices
- List of references to vertex array
define faces (triangles)

- Vertex indices begin at 1
Normal for Triangle

plane \quad \mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0

\[\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0) \]

normalize \quad \mathbf{n} \leftarrow \mathbf{n} / |\mathbf{n}|

Note that right-hand rule determines outward face
Suggestions for HW5

• Read in smf files & test with HW4
• Calculate normal for each triangle
• Use normalized normal as color for triangle
 - Be sure to take absolute value
• Each triangle vertex will need its own color
 - This color is passed to the fragment shader
• Next implement LookAt feature
• Test with fixed eye point and orthographic projection
Suggestions for HW5

• Make sure that your model is in the view volume defined by your \texttt{ortho()} function
• Recall that your view volume is defined in camera coordinates
• Send model-view and projection matrix to the vertex shader via uniform variable
• You should now be displaying an orthographic projection from an arbitrary camera location/orientation
Suggestions for HW5

• Implement perspective projection
 - Think about the parameter values you use

• Define menu that allows user to pick projection type

• Make camera move with a keyboard() function

• User should be able to change the angle, height and radius of the camera location (in cylindrical coordinates)