Computer Viewing

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Introduce the mathematics of projection
• Introduce OpenGL viewing functions
• Look at alternate viewing APIs
Computer Viewing

• There are three aspects of the viewing process, all of which should be / are implemented in the pipeline,
 - Positioning the camera
 • Setting the model-view matrix
 - Selecting a lens
 • Setting the projection matrix
 - Clipping
 • Setting the view volume
The OpenGL Camera

• In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
• The camera is located at origin and points in the negative z direction
• OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity
Default projection is orthographic
Moving the Camera Frame

• If we want to visualize objects with both positive and negative z values, we can either
 - Move the camera in the positive z direction
 • Translate the camera frame
 - Move the objects in the negative z direction
 • Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation \(\text{Translate}(0.0, 0.0, 0.0, -d); \)
 - \(d > 0 \)
Moving Camera back from Origin

frames after translation by \(-d\), \(d > 0\)

default frames

(a) frames before translation

(b) frames after translation by \(-d\), \(d > 0\)
Moving the Camera

• We can move the camera to any desired position by a sequence of rotations and translations

• Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix $C = TR$
OpenGL code

• Remember that last transformation specified is first to be applied

 // Using mat.h

 mat4 t = Translate(0.0, 0.0, -d);
 mat4 ry = RotateY(-90.0);
 mat4 m = t*ry;
The LookAt Function

- The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
 - Should not be parallel to look-at direction
- Replaced by LookAt() in mat.h
 - Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

```cpp
mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);
```
LookAt(eye, at, up)
 eye – location of camera
 at – look-at point
 up – up vector

\[(at_x, at_y, at_z)\]

\[(up_x, up_y, up_z)\]

\[(eye_x, eye_y, eye_z)\]
Other Viewing APIs

• The LookAt function is only one possible API for positioning the camera
• Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Projections and Normalization

• The default projection in the eye (camera) frame is orthographic
• For points within the default view volume
 \[x_p = x \]
 \[y_p = y \]
 \[z_p = 0 \]
• Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
Homogeneous Coordinate Representation

default orthographic projection

\[\begin{aligned}
 x_p &= x \\
 y_p &= y \\
 z_p &= 0 \\
 w_p &= 1
\end{aligned} \]

\[\mathbf{p}_p = \mathbf{M}\mathbf{p} \]

\[\mathbf{M} = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1
\end{bmatrix} \]

In practice, we can let \(\mathbf{M} = \mathbf{I} \) and set the \(z \) term to zero later.
Simple Perspective

- Center of projection at the origin
- Projection plane $z = d$, $d < 0$
Perspective Equations

Consider top and side views

\[x_p = \frac{x}{z/d} \quad y_p = \frac{y}{z/d} \quad z_p = d \]
Homogeneous Coordinate Form

consider $q = Mp$ where $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$

$q = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow p = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$
Perspective Division

• However \(w \neq 1 \), so we must divide by \(w \) to return from homogeneous coordinates.

• This *perspective division* yields:

\[
\begin{align*}
{x_p} &= \frac{x}{z/d} \\
{y_p} &= \frac{y}{z/d} \\
{z_p} &= d
\end{align*}
\]

the desired perspective equations.

• We will consider the corresponding clipping volume with mat.h functions that are equivalent to deprecated OpenGL functions.
OpenGL Orthogonal Viewing

\[\text{Ortho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]

\[\text{near and far measured from camera} \]
OpenGL Perspective

\texttt{Frustum(\textit{left, right, bottom, top, near, far})}
Using Field of View

• With Frustum it is often difficult to get the desired view

• Perspective(fovy, aspect, near, far) often provides a better interface

\[\text{aspect} = \frac{w}{h} \]
Projection Matrices

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science
Objectives

• Derive the projection matrices used for standard OpenGL projections
• Introduce oblique projections
• Introduce projection normalization
Normalization

• Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.

• This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.
Pipeline View

1. **Modelview Transformation**
 - Input: 4D
 - Output: 3D

2. **Projection Transformation**
 - Input: 3D
 - Output: 2D

3. **Perspective Division**
 - Input: 3D
 - Output: 2D

4. **Clipping**
 - Input: 3D
 - Output: 2D

 - Against default cube
Notes

• We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)

• Normalization lets us clip against simple cube regardless of type of projection

• Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
Orthographic Normalization

Ortho(left, right, bottom, top, near, far)

normalization ⇒ find transformation to convert specified clipping volume to default

(left, bottom, -near) → (right, top, -far)

left < right bottom < top near < far
Orthographic Matrix

- Two steps
 - Move center to origin
 \[T(-(left+right)/2, -(bottom+top)/2,(near+far)/2) \]
 - Scale to have sides of length 2
 \[S(2/(left-right),2/(top-bottom),2/(near-far)) \]

\[
P = ST = \begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\
\frac{2}{top - bottom} & 0 & 0 & -\frac{top + bottom}{top - bottom} \\
\frac{2}{near - far} & 0 & 0 & \frac{far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Final Projection

• Set $z = 0$

• Equivalent to the homogeneous coordinate transformation

$$M_{orth} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

• Hence, general orthographic projection in 4D is

$$P = M_{orth}ST$$
Oblique Projections

- The OpenGL projection functions cannot produce general parallel projections such as
 ![Cube Image]

- However if we look at the example of the cube it appears that the cube has been sheared

- Oblique Projection = Shear + Orthographic Projection
General Shear

top view

side view
Shear Matrix

xy shear (z values unchanged)

$$H(\theta, \phi) = \begin{bmatrix}
1 & 0 & -\cot \theta & 0 \\
0 & 1 & -\cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$

Projection matrix

$$P = M_{\text{orth}} H(\theta, \phi)$$

General case: $$P = M_{\text{orth}} STH(\theta, \phi)$$
Equivalency
Effect on Clipping

• The projection matrix $P = STH$ transforms the original clipping volume to the default clipping volume.
Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at $z = -1$, and a 90 degree field of view determined by the planes

$$x = \pm z, \ y = \pm z$$
Perspective Matrices

Simple projection matrix in homogeneous coordinates

$$
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{bmatrix}
$$

Note that this matrix is independent of the far clipping plane
Generalization

\[
N = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

after perspective division, the point \((x, y, z, 1)\) goes to

\[
\begin{align*}
x'' &= x/z \\
y'' &= y/z \\
Z'' &= -(\alpha+\beta/z)
\end{align*}
\]

which projects orthogonally to the desired point regardless of \(\alpha\) and \(\beta\)
Picking α and β

If we pick

$$\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}$$
$$\beta = \frac{2\text{near} \times \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to $z = -1$
the far plane is mapped to $z = 1$
and the sides are mapped to $x = \pm 1, y = \pm 1$

Hence the new clipping volume is the default clipping volume

$$Z'' = -(\alpha + \beta/z)$$
Normalization Transformation

original clipping volume

original object

new clipping volume

distorted object projects correctly
Normalization and Hidden-Surface Removal

• Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if \(z_1 > z_2 \) in the original clipping volume then the for the transformed points \(z_1' > z_2' \).

• Thus hidden surface removal works if we first apply the normalization transformation.

• However, the formula \(z'' = -(\alpha + \beta/z) \) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small.
OpenGL Perspective

• Frustum allows for an unsymmetric viewing frustum (although Perspective does not)

Frustum(left,right,bottom,top,near,far)

\[
z = Z_{\min}
\]

\[
(x_{\min}, y_{\min}, z_{\max}) \\
(x_{\max}, y_{\max}, z_{\max})
\]

left < right bottom < top near < far
near & far positive
OpenGL Perspective

- **Perspective** provides less flexible, but more intuitive perspective viewing

 \[\text{Perspective}(\text{fov}, \text{aspect}, \text{near}, \text{far}); \]

- Field of view in angles
- aspect: w/h
- near < far, both positive
The normalization in Frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthographic transformation.

\[P = \text{NSH} \]

our previously defined perspective matrix shear and scale
Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing.
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading.
- We simplify clipping.
Viewing OpenGL Code

• It’s not too bad, thanks to Ed Angel
• In application

```
model_view = LookAt(eye, at, up);
projection = Ortho(left, right, bottom, top,
        near, far);
```

or

```
projection = Perspective( fov, aspect, near, far);
```

• In vertex shader

```
gl_Position = projection*model_view*vPosition;
```
• Remember that matrices are column major order in GLSL, so …

Transpose your matrices when sending them to the shaders!

```c
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE,
                     model_view);
```