INTERACTIVE PROCEDURAL STREET MODELING

BY: GUONING CHEN, GREGORY ESCH, PETER WONKA, PASCAL MULLER, EUGENE ZHANG

Figure 1: This figure shows the three steps of our pipeline. The input water map is based on a stretch of the Benue River in Nigeria. Left: Starting from topographical water and park maps, the user designs a tensor field. Middle: The tensor field and further editing operations are used to generate a road network. Right: Three-dimensional geometry is created.

Presentation By: Dale Seybold Jr
Introduction

- Modeling 3D environments is time consuming
- Street networks is key
- Procedural techniques are efficient
- Grow like tree
- Lacks interactivity

- Produce alternative
- Add variety of user inputs
- Key is using tensor fields
Street Patterns

- Two dominant directions
- Tensor fields give two sets of hyperstreamlines
- Used to guide street network generation
- Users change tensor fields or street network graph
- Allows global and local operations and constraints
- Interactive editing
Pipeline

- Three stages
 - Tensor Field Generation
 - Street Graph Generation
 - 3D Geometry Generation

- Four maps as input
 - Water map
 - Park and Forest map
 - Height map
 - Population density map

- Manipulate tensor field
 - From boundaries
 - Brush stroke
 - Rotating with noise

- Major and Minor roads
 - Highways/residential
 - Stored as graph
 - Attributes stored at nodes and edges
Tensor Field Generation

- User constraints
- Topography
- N-S/E-W pattern
- Coastline
- Needs Flexibility
- Fields from each constraint generated and blended

- Edit fields
 - Regular and Radial Patterns
 - Brush Strokes
 - Topography
 - Rotation Fields
Figure 4: Left: A tensor field encoding a regular grid. Middle: The resulting street network. Right: A regular pattern found in Brooklyn, New York.

Figure 5: A procedurally generated radial pattern (middle) and its tensor representation (left). The map shown in the right is a radial pattern found in Scottsdale, Arizona.

Figure 6: Left: A map showing California Highway One. Right: A road network from a tensor field derived from the map boundary. Note a major road follows the coastline.
Figure 7: This figure shows the use of the brush stroke interface to orient streets.

Figure 8: This figure shows a regular major road grid (left) and a radial major road pattern (right) over slightly curved minor roads.

Figure 10: This figure shows a density map (left) (white represents high population density value while black indicates lower density) and a generated density transition on the right.
Street Graph Generation

- Alternate tracing major and minor hyperstreamlines
- Major street graph
 - Vertices: Intersections of major and minor hyperstreamlines
 - Edges: Segments between two vertices along a hyperstreamline

- Minor street graph
 - Regions of major graph
 - Can use separate tensor fields
 - Can be discontinuous across major roads

Figure 11: This figure shows a minor road network (right) generated based on the major road network (left)
Street Graph Editing

- Road Segment Manipulation
 - Create/Remove Segments
- Vertex Manipulation
 - Move Vertices
- Seed Point Creation
 - Insert New Streets
- Street Displacement
 - Move a Street
- Layered Editing
 - Draw random street on current street network
- Graph Noise
 - Add irregularities
- Local Sections Replaced
Figure 12: Left: This map shows an example from Chicago, where a single street is laying over an otherwise regular north-south grid pattern. Right: A similar pattern is created using our system.

Figure 14: This figure shows crack patterns in Missouri (left) and a procedurally generated patterns using our system (right).

Figure 13: This figure shows example maps from Manhattan, New York City. Left: Occasionally cells are merged together (1) or partially split by dead ends (2). Right: Slight irregularities can be seen in a regular grid (3).

Figure 15: This figure shows that a park can be inserted into an existing street network (left). Notice that the roads in the park region have a sparser density (right).
Initial Layout: 5 min
Fine Tuning & Experimentation: 30-60 min
Figure 18: A street graph for Manhattan, NY, USA generated using our tool.
Strengths
- Quick generation of initial layouts
- Flexibility
- Tensor fields modeling of street patterns

Limitations
- Single resolution
- Difficult to modify tensor field at significantly different scales

Future Work
- Multi-scaling editing
- Tensor fields to model cracks, fracture patterns, leaf venation patterns, bark, and ice crystals
- Image-based editing techniques

Application
- Content creation
- Games and movies