Transferring Color to Greyscale Images

Tomihisa Welsh, Michael Ashikhmin, Klaus Mueller

Center for Visual Computing, Computer Science Department, SUNY at Stony Brook

SIGGRAPH ‘02

Shawn Pierce
October 5, 2006
CS 536
Problem: Coloring of Greyscale Images

• There is no exact, objective solution to adding chromatic values to a greyscale image
 – This occurs because it is possible for two pixels which are of different colors (different red, green, and blue values), when desaturated, to have the same greyscale value, or luminosity

• Current systems allow for coloration by the user, and require tedious amounts of manually specifying colors for regions
Motivation

• Adding color to an image to enhance visual appearance
• Perceptually enhancing the content in scientific images
• Reducing the amount of work done by the user
 – Other systems require the user to hand-color individual regions of the image
Solution

The color “mood” of the source image (left) is transferred to the destination image (center) to produce a target image (right)

Figure 1: Colors are transferred to the second image without user intervention. Source image courtesy © Ian Britton - FreeFoto.com
Solution

• The general algorithm
 – First convert each image into the $l\alpha\beta$ color space
 • l represents a luminance channel
 • α represents a yellow-blue channel
 • β represents a red-green channel
 – Then iterate through each pixel of the greyscale image to find the best color match in the source image
 – Finally the color information is transferred to the greyscale image to form the target image
Swatches

• Swatches allow more user interaction in the choice of colors to be transferred
• They also decrease the chance that the target image could be corrupted by a source image with largely differing color properties in certain locations
Swatch Examples

(a) Foliage image mapped using a swatch for the bark and the leaves. Source image courtesy of Adam Superchi. Target image courtesy of http://philip.greenspun.com.

(b) The results of colorizing a photograph of a face. Four swatches were used for the hair, skin, shirt and background with a 11x11 neighborhood size for the L_2 metric. Images courtesy of Lela.

(c) The results of colorizing an Ansel Adam’s photograph. A total of 3 swatches were used. Source image courtesy of Paul Kienitz.
(d) A Landsat 7 satellite image (converted to greyscale) was colorized with another Landsat satellite image using the global matching procedure.

(e) One slice of a colorized MRI volume. We used a color cryosection from the Visible Human Project dataset and two swatches. By using swatches, we could avoid transferring the color of the blue gel.

(f) A scanning electron microscopy (SEM) image colorized with a photograph of an ant using the global matching procedure.
Conclusion

• Swatches are not always sufficient for specifying faces and the differences between skin and lips, and also hair and clothing

• This approach is fast and user friendly
 – Ranging from 15 seconds to 4 minutes depending upon the number of swatches, the neighborhood size and the size of the image

• With higher resolution images and larger neighborhood sizes results can be further improved