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Figure 13. Multiphase motion segmentation. Contour evolution for a multiphase
implementation of motion competition on two consecutive frames from the flower
garden sequence. A static scene filmed by a moving camera is partitioned into layers
of different depth. See [23] for details.

Initialization Rotation Segment. Zoom Segment.

Figure 14. Piecewise affine motion segmentation. Segmentations obtained by mini-
mizing functional (38) with ν = 8 ·10−5 for two image pairs showing a hand rotating
(top) and moving toward the camera (bottom).

Figure 12 shows segmentation the contour evolution generated by
minimizing functional (38) for two wall paper images with the text
region (right image) moving to the right and the remainder of the
image plane moving to the left. Even for human observers the differently
moving regions are difficult to detect – similar to a camouflaged lizard
moving on a similarly-textured ground. The gradient descent evolution
superimposed on one of the two frames gradually separates the two
motion regions without requiring salient features such as edges or Har-
ris corner points. Figure 13 shows results obtained with a multiphase
implementation of the motion competition functional. The static scene
filmed by a moving camera is segmented into layers of different depth.

The functional (38) allows to segment piecewise affine motion fields.
In particular, this class of motion models includes rotation and ex-
pansion/contraction. Figure 14 shows segmentations obtained for a
hand in a cluttered background rotating (in the camera plane) and
moving toward the camera. In this example the object of interest can
be extracted from a fairly complex background based exclusively on
their motion.
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8. Statistical Shape Priors for Level Set Segmentation

In the previous sections, we reviewed a number of approaches which
allow to drive the level set segmentation based on various low-level
assumptions regarding the intensity, color, texture or motion of objects
and background. In numerous real-world applications, these approaches
may fail to generate the desired segmentations, because the respective
assumptions about the low-level properties are either insufficient or
even violated. In certain medical images for example, object and back-
ground may exhibit very similar intensity characteristics. Moreover,
the observed intensity or color of a 3D object may not be uniform
due to directional lighting and cast shadows. And finally, misleading
low-level information may arise due to noise or partial occlusion of the
objects of interest. While the generic constraint (9) on the length of
the segmenting boundary helps to cope with a certain amount of noise,
it does introduce a bias toward contours of smaller length, thereby
rounding corners or suppressing small scale details.

Beyond simple geometric regularity, the Bayesian formulation of
the image segmentation problem allows to introduce higher-level prior
knowledge about the shape of expected objects. This idea was pioneered
by Grenander and coworkers [37]. In the following, we will briefly list
some of the key contributions in the field of shape priors for level set
segmentation.

The first application of shape priors for level set segmentation was
developed by Leventon et al. [54] who propose to perform principal
component analysis on a set of signed distance function embedding a
set of sample shapes. The distance functions are sampled on a regular
grid to obtain a vector representation. A term is added to the contour
evolution equation to drive the embedding function to the most likely
shape of the estimated distribution. Tsai et al. [86, 88] proposed a
very efficient implementation of shape-driven level set segmentation by
directly optimizing in the linear subspace spanned by the principal com-
ponents. A detailed analysis of various shape distances and statistical
shape analysis in the level set formulation can be found in [13]. Figure
15 shows the effect of variation along the first principal component on
the embedding function and the implicitly represented contour.

The use of principal component analysis to model level set based
shape distributions has two limitations: Firstly, the space of signed
distance functions is not a linear space, i.e. arbitrary linear combi-
nations of signed distance functions will in general not correspond
to a signed distance function. Secondly, while the first few principal
components capture (by definition) the most variation on the space of
embedding functions, they will not necessarily capture the variation on
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Figure 15. Visualization of principal component analysis on the level set function.
The images show the mean level set function (obtained on a set of airplane shapes),
and its deformation along the first eigenmode. Image data courtesy of [88].

the space of the embedded contours. As a consequence, one may need to
include a larger number of eigenmodes (compared to PCA on explicit
contours) in order to capture certain details of the modeled shape.
Nevertheless, we found the PCA representation to work fairly well in
practical applications. An alternative linear shape representation on
the basis of harmonic embedding has been studied in [33]. Chen et al.
[14] proposed to impose shape information on the zero crossing (rather
than on the level set function). Rousson et al. proposed variational
integrations of the shape prior [78, 79] based on the assumption of a
Gaussian distribution. The use of nonparametric density estimation to
model larger classes of level set based shape distributions was developed
in [20, 74]. This approach allows to model distributions of shape which
are not Gaussian – such as the various views of a 3D object [19] or
the silhouettes of a walking person [20]. Moreover, in the limit of large
sample size, the nonparametric estimator constrains the distribution
to the vicinity of the training shapes, such that the distribution favors
shapes which are signed distance functions. A method to simultane-
ously impose shape information about several objects into level set
based segmentation and to induce a recognition-driven segmentation
through the competition of shape priors was developed in [24]. Dy-
namical statistical shape priors for implicit shape representations were
proposed in [18]. The latter approach takes into account that in the
context of image sequence segmentation, the probability of a contour
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Figure 16. Sample segmentations using statistical shape priors. From left to right,
the shape priors are static (a single shape), uniformly distributed in the PCA
subspace, automatically selected from multiple shape instances [24] and dynamical
[18].

will depend on which contours have been observed in previous frames.
The respective shape models capture the temporal correlations among
silhouettes which characterize many deforming shapes.

In Figure 16, we show a selection of segmentations obtained with
some of the above methods. For further details we refer the reader to
the respective publications.

9. Conclusion

We presented a survey of the class of region-based level set segmenta-
tion methods and detailed how they can be derived from a common
statistical framework. The common goal of these approaches is to iden-
tify boundaries such that the color, texture, dynamic texture or motion
in each of the separated regions is optimally approximated by simple
statistical models.

Given a set of features or measurements f(x) at each image location,
minimization of the respective cost functionals leads to an estimation
of a boundary C and a set of parameter vectors {θi} associated with
each of the separated regions. Depending on the chosen segmentation
criterion, the features f may be the pixel colors, the local structure
tensors or the spatio-temporal intensity gradients, while the parameter
vectors {θi} model distributions of intensity, color, texture or motion.
The model parameters {θi} can be either simple aggregates of the
features (as in the cases of color, texture or dynamic texture presented
here) or derived quantities – as in the case of motion which is computed
from the aggregated space-time gradients. The boundary C ⊂ Ω is
implemented as the zero-crossing of an embedding function φ : Ω → IR.
Energy minimization leads to a gradient descent evolution of the em-
bedding function interlaced with an update of the parameter vectors
{θi} modeling the statistical distributions in the separated regions.
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In numerous experimental results, we demonstrate that this class of
level set methods allows to partition images into domains of coherent
color, texture, dynamic texture or motion. In particular, we show that
– in contrast to the traditional edge-based segmentation schemes, these
region-based approaches are quite robust to noise and to varying initial-
ization, making them well-suited for local optimization methods such
as the level set method. We ended by reviewing some recent advances
regarding the introduction of statistical shape knowledge into level set
based segmentation schemes.
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Brox, Rodrigo de Lúıs Garćıa, Christophe Lenglet, Gianfranco Doretto,
Paolo Favaro, Stefano Soatto and Anthony Yezzi for providing image
examples of their methods.

References

1. G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson. Image segmenta-
tion using active contours: Calculus of variations or shape gradients? SIAM
Journal of Applied Mathematics, 63(6):2128–2154, 2003.

2. J. Besag. On the statistical analysis of dirty pictures. J. Roy. Statist. Soc.,
Ser. B., 48(3):259–302, 1986.

3. J. Bigün and G. Granlund. Optimal orientation detection of linear symmetry.
In Proceedings of the 1st International Conference on Computer Vision, pages
433–438, London, England, June 1987. IEEE Computer Society Press.

4. J. Bigün, G. H. Granlund, and J. Wiklund. Multidimensional orientation
estimation with applications to texture analysis and optical flow. IEEE PAMI,
13(8):775–790, 1991.

5. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.
6. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization

via graph cuts. IEEE PAMI, 23(11):1222–1239, 2001.
7. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical

flow estimation based on a theory for warping. In T. Pajdla and V. Hlavac,
editors, European Conf. on Computer Vision, volume 3024 of LNCS, pages
25–36, Prague, 2004. Springer.

8. T. Brox and J. Weickert. Level set based image segmentation with multiple
regions. In 26th DAGM, pages 415–423, Tübingen, Germany, August 2004.
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27. R. de Lúıs Garćıa and R. Deriche. Tensor processing for texture and colour
segmentation. Research report (to appear), INRIA, 2005.

28. H. Delingette and J. Montagnat. New algorithms for controlling active con-
tours shape and topology. In D. Vernon, editor, Proc. of the Europ. Conf. on
Comp. Vis., volume 1843 of LNCS, pages 381–395. Springer, 2000.

29. A. Dervieux and F. Thomasset. A finite element method for the simulation of
Raleigh-Taylor instability. Springer Lect. Notes in Math., 771:145–158, 1979.

30. A. Dervieux and F. Thomasset. Multifluid incompressible flows by a finite
element method. Lecture Notes in Physics, 11:158–163, 1981.

31. G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures. Int.
Journal of Computer Vision, 51(2):91–109, February 2003.

32. G. Doretto, D. Cremers, P. Favaro, and S. Soatto. Dynamic texture segmen-
tation. In B. Triggs and A. Zisserman, editors, IEEE Int. Conf. on Computer
Vision, volume 2, pages 1236–1242, Nice, Oct. 2003.

33. A. Duci, A. Yezzi, S. Mitter, and S. Soatto. Shape representation via harmonic
embedding. In ICCV, pages 656–662, 2003.

34. M. A. Förstner and E. Gülch. A fast operator for detection and precise
location of distinct points, corners and centers of circular features. In Pro-
ceedings of the Intercommission Workshop of the International Society for
Photogrammetry and Remote Sensing, Interlaken, Switzerland, 1987.

35. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE PAMI, 6(6):721–741, 1984.

36. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision.
Kluwer Academic Publishers, 1995.

37. U. Grenander, Y. Chow, and D. M. Keenan. Hands: A Pattern Theoretic
Study of Biological Shapes. Springer, New York, 1991.

38. M. Hassner and J. Sklansky. The use of Markov random fields as models of
texture. Computer Graphics and Image Processing, 12:357–370, 1980.
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Abstract. The segmentation problem appears in most medical imaging
applications. Many research groups are pushing toward a whole body
segmentation based on atlases. With a similar objective, we propose a
general framework to segment several structures. Rather than inventing
yet another segmentation algorithm, we introduce inter-structure spa-
tial dependencies to work with existing segmentation algorithms. Rank-
ing the structures according to their dependencies, we end up with a
hierarchical approach that improves each individual segmentation and
provides automatic initializations. The best ordering of the structures
can be learned off-line. We apply this framework to the segmentation of
several structures in brain MR images.

1 Introduction

Different anatomical structures often have strong spatial dependency among each
other. This spatial dependency is usually present in a hierarchical manner, i.e.,
the shape and pose variations of one structure is fully or partially bounded by
those of other more stable structures. We refer to this type of spatial dependency
as ordered spatial dependency due to its ordered nature. Radiologists routinely
rely on ordered spatial dependency to help them locating and identifying struc-
tures that have large variations in shape, pose, and appearance by searching
its presence relative to other structures that are much easier to identify. In this
paper, we would like to take benefit from this inter-structure ordered spatial de-
pendency in an explicit manner by proposing a novel general image segmentation
framework. The proposed framework learns the ordered spatial dependency from
pre-segmented training images and applies the learned model to improve both
the performance and robustness of individual segmentation algorithms utilized.

A key benefit of the proposed framework is that it is not another new seg-
mentation algorithm but a new general framework that could integrate any ex-
isting segmentation algorithms. The motivation of this work arises from the fact
that many powerful and effective segmentation algorithms such as seeded re-
gion growing[1], watershed[16], active contours[9, 3], and graph cuts[2, 12] have
been proposed and used widely in particular for medical image segmentation
applications. The topic of devising a segmentation framework that combines ex-
isting segmentation algorithms to achieve better results has recently emerged as
a new promising research direction [13]. The work [13] proposed a framework
that computes an improved segmentation result based on optimizing parameter
values of multiple segmentation algorithms. Similarly, our proposed framework
also improves the segmentation results over the individual algorithms utilized,



but it achieves this in a different way by focusing on segmenting objects in a
hierarchical manner using the ordered spatial dependency.

Observing that structures often have a strong spatial dependency, we define a
new spatial prior based on neighboring structures. This dependency is introduced
by registering the structure of interest to a common reference coordinate system
based on neighboring structures. This can be achieved by computing the elastic
matching of the neighboring structures from one image to a reference one, and
then applying it to the structure of interest. This modeling can be implemented
for each structure, based on the ones already segmented. This leads us to the
definition of a hierarchical segmentation framework.

The proposed work has two important contributions: 1) the explicit modeling
and utilization of ordered spatial dependency for segmentation; 2) the estimation
of the optimal segmentation sequence for segmenting multiple structures. Our
work is closely related to atlas-based segmentation (cf. [5, 11, 8]), which treats
segmentation as a registration problem by elastically matching a pre-segmented
atlas to the target image. Atlas-based segmentation approaches are generally
better-suited for segmenting structures that are stable over the population of
study. Our proposed framework uses elastic matching to enforce the spatial de-
pendency and restricts the plausible segmentation space rather than using it to
obtain the final segmentation. The actual segmentation of each structure is still
performed using a pre-selected segmentation algorithm.

Other closely related work are the active shape and appearance models [6,
7, 10], which assume a statistical correlation between the shape or appearance
of the organs over population. Our proposed segmentation framework uses a
weaker assumption by modeling the relative locations of the structures between
one and another. It is also worth noting that recent works on joint segmentation
and registration [17, 15, 14], that also use segmentation and registration in an
iterative manner, are primarily used for segmenting two or more images simul-
taneously and do not use ordered dependency. In fact, one could incorporate
active shape and appearance models within our framework as its building blocks
like any other segmentation algorithms.

In the following sections, we detail the proposed segmentation framework and
demonstrate its utility in segmenting multiple structures from MR brain images.

2 Modeling inter-structure spatial dependency

Let {S1, . . . ,SN} be the set of structures of interest in an image. We assume a
dataset of M annotated images to be available. We note {sij ; i = 1, . . . , N, j =
1, . . . ,M} the complete set of structures. Given a manual segmentation s of a
structure S ∈ {S1, . . . ,SN}, we propose a smooth approximation of the condi-
tional probability of an image location x to be inside the structure s:

pS(x|s) ∝ exp(Hε(φ(x))− 1),

where φ is the distance transform of s and Hε is a regularized Heaviside func-
tion with ε controlling the level of smoothness [3]. This distribution gives high
probability to voxels inside s and low probability to the ones outside, and the



smoothness of the transition is related to the distance to the interface. Also, we
note the conditional probability of a voxel x to belong to the background of s as
pS̄(x|s):

pS̄(x|s) ∝ exp(−Hε(φ(x))).

Now, if we want to combine all the annotated instances of a structure Si

to define the spatial prior probability of the structure Si, we need to place the
manual segmentations in a common reference1. It is at this point that we con-
sider the ordered spatial dependency, i.e., Si’s dependency on known neighboring
structures. The principle is to align all the instances sij of Si to a common coor-
dinate system using the known structures as anchors. This is done by estimating
a warping between each instance of the anchor structure(s) to a chosen refer-
ence. These warpings are obtained using an image based registration algorithm
[4] applied on level set representations of each structure instance. If several an-
chor structures are available, they are merged to form a single shape composed
of several components. This allows us to constrain even more the deformation
field between the structures.

Then, these warpings are applied to the corresponding structures sij . Let
s̃ij be the segmentation transformed by the warping ψij and φ̃ij be its level
set representation, the spatial prior probability of Si and its background S̄i are
defined in the reference image as the geometric mean of each individual prior:

pSi
(x) ∝

 M∏
j=1

exp
(
Hε(φ̃ij(x))− 1

) 1
M

, pS̄i
(x) ∝

 M∏
j=1

exp
(
−Hε(φ̃ij(x))

) 1
M

Up to now, we did not give any detail about which anchor structures were
considered to estimate the warping. A priori, we do not know which structure Si

is spatially dependent on. We propose to learn these dependencies by defining
the spatial probability of Si with respect to other structures {Sk, k 6= i}. We
denote Vi all possible subsets of {Sk, k 6= i}, vi ∈ Vi a subset of segmented
structures, and vij the corresponding annotated structures in the training image
j. With these notations, all structure sij are registered to a reference image by
estimating the warpings that align vij to a reference set vir. Therefore, for each
choice of subset vi, we end up with different registrations and hence, a different
spatial prior probability for Si. Since this probability is subject to the selected
subset vi, we will use the notations pSi

(x|vi) and pS̄i
(x|vi) to denote respectively

the prior probabilities of a voxel to be inside and outside the structure Si, given
a set of known segmentations vi. The choice of the optimal subset of reference
for each structure is studied in Section 3.2.

In the following section, we incorporate this spatial prior in a general seg-
mentation framework and we detail the complete framework obtained when a
level set based approach is considered.

1 The common reference is chosen arbitrary in this work. It would be interesting to
study how important this choice is.



3 Integrating spatial prior in the segmentation process

Given an image I and a set of segmented structures v, we want to extract an-
other structure s of the class S (the class S is one of the classes Si considered
previously). We consider a statistical formulation of this segmentation problem
using a maximum a posteriori estimation. This consists in maximizing the pos-
terior conditional distribution p (s|I, v). Making the assumption that I and v are
not correlated, the optimal structure is the one maximizing

p (s|I, v) = p (s|I) p (s|v).

The first term can be expressed with any statistically defined segmentation al-
gorithm whereas the other one can integrate the spatial prior learned in the
previous section. To incorporate this prior knowledge, we make the assumption
that the prior probabilities of the locations x are independent and identically
distributed. This allows us to incorporate the spatial prior probability term in-
troduced in the previous section:

p (s|v) =
∏

x∈sin

pS(x|v)
∏

x∈sout

p S̄(x|v),

where sin and sout are respectively the parts of the image inside and outside
the structure s. This formulation is very general and any efficient segmentation
approaches like graph-cuts [2, 12] and surface evolutions [9, 3] can be considered.
In the following, we develop our system using level set based surface evolutions
but this should not be seen as the only possibility.

3.1 Level set based segmentation

In the level set framework, the structure of interest is represented as the zero
crossing of an embedding function φ : Ω → R : s = {x ∈ Ω|φ(x) = 0}. Hence,
the problem of finding the surface s becomes the one of finding a real function
φ that maximizes: p (s|I, v) → p (φ|I, v). Equivalently, the optimal solution can
be obtained from the minimization of the energy:

E(φ) = − log p (φ|I, v) = − log p (φ|I)− log p (φ|v)

We follow [3] to define the first term with a region-based criteria and a regularity
constraint. To use the spatial prior, we first need to register the anchor structures
from the current image to the reference ones used for modeling. Let ψ be the
obtained warping, the whole energy can be written as follows:

E(φ) =−
∫

Ω

(Hφ log pin(I(x)) + (1−Hφ) log pout(I(x)) + ν|∇Hφ|) dx

− λ

∫
Ω

(Hφ log pS(ψ(x)|v) + (1−Hφ) log p S̄(ψ(x)|v)) dx,

where pin and pout are the intensity distributions inside and outside the struc-
tures. They can be estimated on-line or a priori from the learning set. We min-
imize this energy using a gradient descent obtained from the Euler-Lagrange



equations. This gives the following curve evolution:

φt = δ(φ)
(
ν div

(
∇φ
|∇φ|

)
+ log

pin(I)
pout(I)

+ λ log
pS(ψ(x)|v)
p S̄(ψ(x)|v)

)

= δ(φ)

ν div
(
∇φ
|∇φ|

)
+ log

pin(I)
pout(I)

+
λ

M

M∑
j=1

(
2Hε(φ̃cj(ψ(x)))− 1

)
where φ̃cj stand for the warpings estimated during the modeling phase for the
current shape. The segmentation of s is obtained by evolving φ according to this
equation until convergence (the initialization is discussed in the next paragraph).
For an efficient implementation,

∑M
j=1

(
2Hε(φ̃cj(x))− 1

)
can be estimated off-

line, and then warped to the current image domain using ψ.

3.2 Hierarchical segmentation

For a given ordering, we can run the segmentation algorithm on each structure
successively. This process can be initialized automatically if we are able to seg-
ment the first structure without any spatial prior. In most medical images, this
can be done easily by starting with the envelope of the body. Then, to segment
each structure, we also need to initialize the associated level set. A straightfor-
ward solution is to place seeds inside each structure. Obviously, this would give
a good initialization but it requires user interaction. The spatial prior can be
used to make these initializations automatic by selecting the voxels with a prior
probability greater than a threshold τ . More precisely, the initial level set φ0

i

used to extract the structure Si is set as follow2:φ0
i (x) = +1, if log

pS(ψ(x)|v)
p S̄(ψ(x)|v)

≥ τ,

φ0
i (x) = −1, otherwise.

With this technique, the segmentation of all N structures can be obtained auto-
matically. Only the weights ε, ν, λ and τ must be set before starting the process.

4 Estimation of the optimal segmentation sequence

To learn the subset vi that helps the segmentation of Si the best, we propose
to apply the segmentation on a second set of annotated images. For each vi, we
can measure the quality of the segmentation according to a chosen similarity
measure M between the automatic and “true” segmentation. Assuming that,
if Sj depends on Sk, Sk cannot depend on Sj , the objective is to estimate the
best ordering of the structures such that structures classified higher can be used
to extract lower-classified ones. Once all the segmentations obtained for a given

2 Once initialized with the spatial prior, the level set is projected to a signed distance
functions. This is repeated after each iteration of the level set evolution.



Fig. 1. Location priors corresponding to the optimal ordering - From left
to right are the shown the reference image, and the spatial priors of (1) the lateral
ventricle given the skull, (2) the thalamus given the skull and the lateral ventricle,
and (3) the caudate nucleus given all other structures.

ordering, we measure the overall quality of the process by comparing the re-
sults with the manual segmentations according to a similarity measure M. The
optimal ordering is then given by:

Ô = arg max
O∈O

N∑
i=1

M∑
j=1

M(sij , ŝij(O)),

where O is set of all permissible orderings, and ŝij(O) is the segmentation ob-
tained automatically in the image j for the structure Si using the ordering O. As
for the similarity measure, we use the Dice coefficient. In general the number of
structures to extract is relatively small (<10) and all combinations can be tested.
If we fix the first structure, the number of combinations is equal (N − 1)!. Even
though, this number gets high for N = 10, this is an off-line process and the user
can introduce heuristics to reduce the possible orderings. For example if choosing
a given structure at a high level conducts to a bad segmentation of the next one,
a whole set of possible orderings can be discarded. We are conducting further
investigations to reduce efficiently the possible orderings in a more theoretical
way.

5 Hierarchical segmentation of brain structures in MR
images

We validate this segmentation framework on several structures of the brain in
MR images: the lateral ventricles, the caudate nucleus, the thalamus and the
skull. These structures were annotated manually in 13 different sagittal slices.

The first step is the learning of the optimal ordering. To start this process,
we must be able to segment automatically the first anchor structure. For the
brain image shown in Figure 1, this is relatively simple if we consider the skull.
Initializing the level set with a seed in the background is sufficient to get its
segmentation. Then, each structure can be initialized automatically by follow-
ing Section 3.2. We set the threshold τ to the maximum value of the location
map J minus 0.1. This guarantees to give a seed inside the structure. Having 4



Fig. 2. Location priors for each possible ordering - Each column shows the
spatial prior obtained for one particular ordering. Priors corresponding to the optimal
ordering are shown in the third column.

Fig. 3. Examples of automatic segmentations - From left to right: segmentation
without prior and with manual initialization, automatic segmentation of the same
image, and three different results obtained with the “optimal” ordering.

structures, the number of possible orderings is 6. We have tested our algorithm
for each possible choice. Figure 1 shows the sequence that maximizes the overall
Dice coefficient between the obtained segmentations and the manual ones for the
whole training set. Figure 2 shows the location maps estimated for each ordering.

Once the optimal ordering known, we can validate the approach using a
leave-one-out strategy on the 13 available images. A few results are presented in
Figure 3. As quantitative validation, we computed the Dice coefficient for each
of the 52 automatically computed segmentation, giving an average above 0.8.

6 Conclusion

We have presented a novel image segmentation framework that learns the or-
dered spatial dependency among structures to be segmented and applies it in a
hierarchical manner to both provide automatic initializations and improve each
individual segmentation algorithm’s performance. We demonstrated the efficacy
of the proposed framework by applying it to the MR brain image segmentation
with level set algorithm as its segmentation algorithm. Future work includes ap-
plying this framework to more applications with more types of segmentation al-
gorithms. We believe that the paradigm of “boosting” segmentation performance
by combining existing segmentation algorithms into a systematic framework is
a promising research direction and the work presented in this paper is one step
along this direction.
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