CS 430
Computer Graphics

Introduction
Week 1, Lecture 1

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Overview

• Course Policies/Issues
• Brief History of Computer Graphics
• The Field of Computer Graphics: A view from 66,000ft
• Structure of this course
• Homework overview
• Introduction and discussion of homework #1
Computer Graphics: Course Goals

• Provide introduction to fundamentals of 2D and 3D computer graphics
 – Representation (lines/curves/surfaces)
 – Drawing, clipping, transformations and viewing
 – Implementation of a basic graphics system
 • draw lines using Postscript
 • simple frame buffer with PBM & PPM format
 • ties together 3D projection and 2D drawing
Interactive Computer Graphics
CS 432

• Learn and program WebGL
• Computer Graphics was a pre-requisite
 – Not anymore
• Looks at graphics “one level up” from CS 430
• Useful for Games classes
• Core course in the Graphics, Vision and Interaction concentration
Advanced Rendering Techniques
CS 431

- Available as CS 636 Advanced Computer Graphics
- Offered infrequently
- 3D Computer Graphics
- CS 430 or CS 432 is a pre-requisite
- Implement Ray Tracing algorithm
- Lighting, rendering, photorealism
- Study Radiosity and Photon Mapping
ART Student Images
Computer Graphics: Technical Material

- Course coverage
 - Mathematical preliminaries
 - 2D lines and curves
 - Geometric transformations
 - Line and polygon drawing
 - 3D viewing, 3D curves and surfaces
 - Splines, B-Splines and NURBS
 - Solid Modeling
 - Color, hidden surface removal, Z-buffering
Computer Graphics: Course Highlights

• Bresenham’s scan conversion algorithm
• Cohen-Sutherland clipping algorithm
• Sutherland-Hodgman polygon clipping
• The De Casteljau Algorithm
• Polygon filling
• B-Splines, NURBS, De Boor’s Algorithm
• Z-buffer algorithm; backface culling
Computer Graphics: Course Management Issues

• All course policies are in the syllabus
• Extensive use of PDF handouts
• Must read email every day
• There will be 5 programming assignments (*plan on 8-to-15 hrs*)
• Suggestion: print out handouts before class, use them to take notes
• Weekly online quizzes starting Week 3
• Final exam on material *not* covered by the programming assignments
• Will take attendance for the first 3 weeks
• **READ THE SYLLABUS!!**
Computer Graphics: Collaboration Policies

- Thou Shall/May
 - write your own code
 - do your own math
 - attribute any work that is not your own
 - talk amongst yourselves, share ideas
 - use data structure libraries

- Thou Shall Not
 - share/copy code
 - use ideas without attribution
 - utilize geometry/graphics libraries
 - Use generative tools

- All code will be auto checked for plagiarism
- Violations will result in an automatic F
Go to class web page
CG Technical Areas

- Geometric Modeling
 - Mathematics and algorithms that define 2D and 3D geometric objects
CG Technical Areas

- Human/Computer Interaction
 - Methods for creating graphics data via user input

Surface Drawing, Steven Schkolne
CG Technical Areas

• Lighting and Shading
 – Math, physics and algorithms that specify how light interacts with matter
CG Technical Areas

- Rendering
 - Algorithms that take geometry, lighting, shading and viewing information and generate an image
CG Technical Areas

- Visualization and Visual Analytics
 - Techniques for visually communicating and exploring scientific, medical or abstract data
CG Technical Areas

- Perception
 - Study of how humans perceive light and information
CG Technical Areas

• Animation
 – Algorithms for making models change over time
CG Technical Areas

• Simulation
 – Using physics to make models move
CG Technical Areas

• Software and Hardware
 – Designing software and hardware systems to implement
 graphics algorithms
Computer Graphics: In The Beginning

- MIT - 1963
 Ivan Sutherland’s Sketchpad
- Modified oscilloscope for drawing
- The original CAD system

Courtesy Marc Levoy @ Stanford U
Computer Graphics from 66,000ft

- Display types
- Display/Rendering algorithms
- Application areas
 - Entertainment
 - CAD/CAM
 - Scientific & medical visualization
 - Training & education
 - Synthetic realities
 - Art and design
 - Games
2D Graphics

- **Raster:**

 Pixels
 - X11 bitmap, XBM
 - X11 pixmap, XPM
 - GIF
 - TIFF
 - PNG
 - JPG

 Lossy, jaggies when transforming, good for photos.

- **Vector:**

 Drawing instructions
 - Postscript
 - CGM
 - Fig
 - DWG

 Non-lossy, smooth when scaling, good for line art and diagrams.
2D Graphics

• Raster:

• Vector:
Adobe Photoshop: 2D Raster Graphics
2D Raster Graphics
Adobe Illustrator: 2D Vector Graphics
2D Vector Graphics
3D Rendering

- **1960s - the visibility problem**
 - Roberts (1963), Appel (1967) - hidden-line algorithms
 - Sutherland (1974) - visibility = sorting

- **1970s - raster graphics**
 - Gouraud (1971) - diffuse lighting
 - Phong (1974) - specular lighting
 - Blinn (1974) - curved surfaces, texture
 - Crow (1977) - anti-aliasing
3D Rendering

Toward Reality in the 1980s

- **global illumination**
 - Whitted (1980) - ray tracing
 - Goral, Torrance et al. (1984), Cohen (1985) - radiosity
 - Kajiya (1986) - the rendering equation

- **photorealism**
 - Cook & Torrance (1982) – rough surface reflectance
 - Cook (1984) - shade trees
 - Perlin (1985) - shading languages
 - Hanrahan and Lawson (1990) - RenderMan

Courtesy Marc Levoy @ Stanford U
Model Complexity

http://www.graphics.cornell.edu/research/intro/model_complexity.jpg
Away from Reality

- early 1990s - non-photorealistic rendering
 - Drebin et al. (1988), Levoy (1988) - volume rendering
 - Haeberli (1990) - impressionistic paint programs
 - Salesin et al. (1994-) - automatic pen-and-ink illustration
 - Meier (1996) - painterly rendering

Courtesy Marc Levoy @ Stanford U
And Back Again

- late 1990s & 2000s - photon mapping, subsurface scattering and participating medium
 - H. Wann Jensen
Application Areas

- *Entertainment*
- CAD/CAM
- Scientific & Medical visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Pixar
Lord Of the Rings Troll
Application Areas

- Entertainment
- **CAD/CAM**
- Scientific & Medical visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

\[\tau_i = M(\dot{\theta}) \cdot \ddot{\theta} + V(\theta, \dot{\theta}) + G(\theta) + F(\dot{\theta}, \ddot{\theta}) \]

Regli et al @ Drexel
Application Areas

- Entertainment
- CAD/CAM
- *Scientific & Medical Visualization*
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Lombeyda & Breen @ CalTech
Application Areas

- Entertainment
- CAD/CAM
- Scientific visualization
- **Training & Education**
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games
Application Areas

- Entertainment
- CAD/CAM
- Scientific visualization
- Training & Education
- **Synthetic Realities**
 - VR, AR, etc.
- Art and design
- Games

![Telepresence](image1)

UCLA

Augmented Reality

FakeSpace Cave
Application Areas

- Entertainment
- CAD/CAM
- Scientific visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games
Application Areas

- Entertainment
- CAD/CAM
- Scientific visualization
- Training & Education
- Synthetic Realities – VR, AR, etc.
- Art and design
- Games
Programming Assignments

• **No APIs**: OpenGL, GLUT, Mesa, DirectX…
• Just line and filled polygon rendering
 – Color in last assignment
• Output in the form of
 – Lines (Postscript)
 – 2D ASCII bitmaps (PBM and PPM)
• Program source (and makefile) turned in via Bb Learn
• *Executable MUST RUN on Linux (tux)*
• *Whatever language you want*, so long as you can deliver a program that TA can run (c, c++, java, python, …)
For programming assignments

- Compute line segments. Export as Postscript.
- Use PBM as B/W “software” frame buffers
- We will be implementing parts of the 2D Engine, 3D Engine and Pixel Cache of a graphics accelerator
- Issue: How to translate the mathematics of 2D/3D shapes to the 2D screen?
- Tip: Renew your friendship with your linear algebra textbook
- Read homeworks ahead. It will help you to structure your code for future requirements.
Assignment Dependencies

- Every HW - Read in geometry and write out lines or images
- HW1 - Clip 2D lines and export them
- HW2 - Clip 2D polygons and draw edges with HW1
- HW3 - Use HW2 to clip 2D polygons and fill in interiors
- HW4 - Project 3D polygon edges (3D lines) into 2D. Draw them with HW2
- HW5 - Project 3D triangles into 2D. Combine HW3 and HW4, and add depth buffer
- EC - Generate lines and draw with HW1
Programming Assignments Dependencies

<table>
<thead>
<tr>
<th></th>
<th>HW 1</th>
<th>HW 2</th>
<th>HW 3</th>
<th>HW 4</th>
<th>HW 5</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW1</td>
<td>Write Postscript file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read "Postscript" File</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2D Transformations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line Drawing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2D Line Clipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW 2</td>
<td>Polygon Clipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Write PBM/PPM file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW 3</td>
<td>Window to Viewport Transformation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polygon Filling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW 4</td>
<td>Read SMF file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D Geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D Viewing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW 5</td>
<td>Z-Buffering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth-Cueing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Bezier Curve Drawing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Structures

• 2D Lines
• Initially B/W, then RGB Frame Buffer
• 2D/3D polygons (vertices and edges)
• Triangle mesh
• 3D camera/scene
When it’s all over!
Don’t forget ICG & ART!
Programming assignment 1

• Input PostScript-like file
• Output Lines as Postscript
• Primary I/O formats for the course
• Create data structure to hold points and lines in memory (*the world model*)
• Implement 2D translation, rotation and scaling of the world model
• Implement line clipping
• Due October 13th
• Get started now!