CS 430
Computer Graphics

Line Drawing
Week 1, Lecture 2

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Outline

• Line drawing
• Digital differential analyzer
• Bresenham’s algorithm
Line Drawing
Scan-Conversion Algorithms

• Scan-Conversion: Computing pixel coordinates for *ideal* line on 2D raster grid

• Pixels best visualized as circles/dots
 – Why? Monitor hardware
Drawing a Line

- $y = mx + B$
- $m = \Delta y / \Delta x$
- Start at leftmost x and increment by 1
 \[
 \Delta x = 1
 \]
- $y_i = \text{Round}(mx_i + B)$
- This is expensive and inefficient
- Since $\Delta x = 1$, $y_{i+1} = y_i + \Delta y = y_i + m$
 - No more multiplication!
- This leads to an incremental algorithm
Digital Differential Analyzer (DDA)

- If $|\text{slope}|$ is less than 1
 - $\Delta x = 1$
 - else $\Delta y = 1$
- Check for vertical line
 - $m = \infty$
- Compute corresponding Δy (Δx) = $m \ (1/m)$
- $x_{k+1} = x_k + \Delta x$
- $y_{k+1} = y_k + \Delta y$
- Round (x,y) for pixel location
- Issue: Would like to avoid floating point operations
Generalizing DDA

• If $|\text{slope}|$ is less than or equal to 1
 – Ending point should be right of starting point
• If $|\text{slope}|$ is greater than 1
 – Ending point should be above starting point
• Keep x and y as floating point values
• Vertical line is a special case
 $\Delta x = 0$
Bresenham’s Algorithm

• 1965 @ IBM
• Basic Idea:
 – Only integer arithmetic
 – Incremental

• Consider the *implicit* equation for a line:

\[f(x, y) = ax + by + c = 0 \]
The Algorithm

```c
void bresenham(IntPoint q, IntPoint r) {
    int dx, dy, D, x, y;
    dx = r.x - q.x;                           // line width and height
    dy = r.y - q.y;
    D = 2*dy - dx;                            // initial decision value
    y = q.y;
    for (x = q.x; x <= r.x; x++) {
        writePixel(x, y);
        if (D <= 0) D += 2*dy;                 // below midpoint - go to E
        else {
            D += 2*(dy - dx); y++;             // above midpoint - go to NE
        }
    }
}
```

Assumptions: $q_x < r_x$

$0 \leq \text{slope} \leq 1$
Bresenham’s Algorithm

Given:

implicit line equation: \[f(x, y) = ax + by + c = 0 \]

Let: \[d_x = r_x - q_x, \quad d_y = r_y - q_y \]

where \(r \) and \(q \) are points on the line and

\(d_x \) is positive

\[a = d_y, \quad b = -d_x, \quad c = -(q_x r_y - r_x q_y) \]

Then:

Observe that all of these are integers

and: \(f(x, y) < 0 \) for points above the line

\(f(x, y) > 0 \) for points below the line

Now…..
Bresenham’s Algorithm

- Suppose we just finished \((p_x, p_y)\)
 - (assume 0 ≤ slope ≤ 1)
 - other cases symmetric
- Which pixel next?
 - \(E\) or \(NE\)

East \((E = (p_x + 1, p_y))\)

NorthEast \((NE = (p_x + 1, p_y + 1))\)
Bresenham’s Algorithm

Assume:

• $Q = \text{exact } y \text{ value at } x = p_x + 1$

• y midway between E and NE: $M = p_y + 1/2$

Observe:

If $Q < M$, then pick E

Else pick NE

If $Q = M$, it doesn’t matter
Bresenham’s Algorithm

• Create “modified” implicit function (2x)
 \(f(x, y) = 2ax + 2by + 2c = 0 \)

• Create a decision variable \(D \) to select, where \(D \) is the value of \(f \) at the midpoint:

\[
D = f(p_x + 1, p_y + (1/2))
\]
\[
= 2a(p_x + 1) + 2b\left(p_y + \frac{1}{2}\right) + 2c
\]
\[
= 2ap_x + 2bp_y + (2a + b + 2c)
\]
Bresenham’s Algorithm

• If $D > 0$ then M is below the line $f(x, y)$
 – NE is the closest pixel

• If $D \leq 0$ then M is above the line $f(x, y)$
 – E is the closest pixel
Bresenham’s Algorithm

• If \(D > 0 \) then M is below the line \(f(x, y) \)
 – \(NE \) is the closest pixel

• If \(D \leq 0 \) then M is above the line \(f(x, y) \)
 – \(E \) is the closest pixel

• Note: because we multiplied by 2x, \(D \) is now an integer---which is very good news

• How do we make this incremental??
Case I: When E is next

- What increment for computing a new D?
- Next midpoint is: $(p_x + 2, p_y + (1/2))$

\[
D_{\text{new}} = f(p_x + 2, p_y + (1/2))
\]

\[
= 2a(p_x + 2) + 2b\left(p_y + \frac{1}{2}\right) + 2c
\]

\[
= 2ap_x + 2bp_y + (4a + b + 2c)
\]

\[
= D + 2a = D + 2d_y
\]

- Hence, increment by: $2d_y$
Case II: When \(NE \) is next

- What increment for computing a new \(D \)?
- Next midpoint is: \((p_x + 2, p_y + 1 + (1/2))\)

\[
D_{new} = f(p_x + 2, p_y + 1 + (1/2))
\]

\[
= 2a(p_x + 2) + 2b \left(p_y + \frac{3}{2} \right) + 2c
\]

\[
= 2ap_x + 2bp_y + (4a + 3b + 2c)
\]

\[
= 2ap_x + 2bp_y + (2a + b + 2c) + (2a + 2b)
\]

\[
= D + 2(a + b) = D + 2(d_y - d_x)
\]

- Hence, increment by: \(2(d_y - d_x)\)
How to get an initial value for D?

• Suppose we start at: (q_x, q_y)
• Initial midpoint is: $(q_x + 1, q_y + 1/2)$

Then:

$$D_{\text{init}} = f(q_x + 1, q_y + 1/2)$$

$$= 2a(q_x + 1) + 2b \left(q_y + \frac{1}{2} \right) + 2c$$

$$= (2aq_x + 2bq_y + 2c) + (2a + b)$$

$$= 0 + 2a + b$$

$$= 2d_y - d_x$$
The Algorithm

```c
void bresenham(IntPoint q, IntPoint r) {
    int dx, dy, D, x, y;
    dx = r.x - q.x;                  // line width and height
    dy = r.y - q.y;
    D = 2*dy - dx;                  // initial decision value
    y = q.y;
    for (x = q.x; x <= r.x; x++) {  // start at (q.x,q.y)
        writePixel(x, y);
        if (D <= 0) D += 2*dy;     // below midpoint - go to E
        else {                       // above midpoint - go to NE
            D += 2*(dy - dx); y++;
        }
    }
}
```

Assumptions: \(q_x < r_x \)
\[0 \leq \text{slope} \leq 1 \]

Pre-computed: \[2d_y, \quad 2(d_y - d_x) \]
Generalize Algorithm

- If $q_x > r_x$, swap points
- If slope > 1, always increment y, conditionally increment x
- If $-1 \leq $ slope < 0, always increment x, conditionally decrement y
- If slope < -1, always decrement y, conditionally increment x
- Rework D increments
Generalize Algorithm

- Reflect line into first case
- Calculate pixels
- Reflect pixels back into original orientation
Bresenham’s Algorithm: Example

\[F(x, y) = 2(Y_p x - X_p y) = 0 \]
\[F(x, y) = 2(5x - 7y) = 0 \]
Bresenham’s Algorithm: Example
Some issues with Bresenham’s Algorithms

- Pixel ‘density’ varies based on slope
 - Straight lines look darker, more pixels per unit length
- Endpoint order
- Line from P1 to P2 should match P2 to P1
- Always choose E when hitting M, regardless of direction
Questions?

Go to Assignment 1