Conic Sections via NURBS

- Obtained via projection of the 3D parabola onto a plane
- Note:
 - 3D Case: rational curve is a 4D object
 - 2D Case: rational curve is a 3D object
 - assign \(w \) to each control point

Conic Sections via NURBS: A Circular Arc

- The two sides of the control polygon are of equal length
- The chord connecting the first and last control points meets each leg at an angle \(\theta \) equal to half the angular extent of the desired arc (for instance, \(30^\circ \) for a \(60^\circ \) arc)
- The weight of the inner control point is equal to the cosine of \(\theta \)
- Knot vector is \((0.0, 0.0, 0.0, 1.0, 1.0, 1.0)\)

Conic Sections via NURBS: A Circle

- What if we need an arc of \(>180^\circ \) ?
- Idea:
 - Use multiple 90° or 120° arcs
 - Stitch them together with knots
- Example:
 - 3 arcs of 120°
Conic Sections via NURBS

Example:
4 arcs of 90°

Knot Insertion

• Issue: More control points mean more control
• How do we add more points and keep same curve?

Knot Insertion

• Basic Approach
 – Decide where we’d like to tweak the curve
 – Add a new knot
 – Find affected d-1 control points
 – Replace it with d new control points

Example:
New knot at u=2.6

Knot Insertion Algorithm

• Create new control point
 \[Q_j = (1-\alpha_j)P_{j-1} + \alpha_j P_j \]
 Where \(\alpha_j \) is defined as
 \[\alpha_j = \frac{t-u_j}{u_{j+d}-u_j} \]

Properties of Knot Insertion

• Increasing the multiplicity of a knot decreases the number of non-zero basis functions at this knot
• At a knot of multiplicity \(d \), there will be only one non-zero basis function
• Corresponding point on the curve \(p(u) \) is affected by exactly one control point \(p_i \)
 – In fact \(p(u) \) is \(p_i \)
The de Boor Algorithm

- Generalization of de Casteljau's algorithm
- It provides a fast and numerically stable way for finding a point on a B-spline curve
- Observation: if a knot u is inserted d times to a B-spline, then $p(u)$ is the point on the curve.
- Idea: We just simply insert u d times and the last point is $p(u)$!
De Boor’s Algorithm

If \(u \) lies in \([u_i, u_{i+1})\) and \(u = u_h \), let \(h = d \)

If \(u = u_i \) and \(u \) is a knot of multiplicity \(s \), let \(h = d - s \)

Copy the affected control points \(p_{u_h}, p_{u_{h+1}}, \ldots, p_{u_{h+s}} \)
to a new array and rename them as \(p_{u_{h+d}}, p_{u_{h+d+1}}, \ldots, p_{u_{h+d+s}} \)

for \(r := 1 \) to \(h \) do

for \(i := k + r \) to \(k + d - r \) do

\{
 \text{Let } a_i = (u - u_i) / (u_{i+r} - u_i) \\
 \text{Let } p_i = (1 - a_i) p_{i+k+1} + a_i p_{i+k} \\
 \}

\(p_{u_{h+d}} \) is the point \(p(u) \).

Example of de Boor’s Algorithm

Degree 3 B-spline curve (i.e., \(d = 3 \))
Defined by seven control points \(p_0, \ldots, p_6 \)

And knot vector:

\[u = 0.4 \]

Similar but Different

De Casteljau’s:
- Dividing points are computed with a pair of numbers \((1 - u) \) and \(u \) that never change
- Can be used for curve subdivision
- Uses all control points

De Boor’s:
- These pairs of numbers are different and depend on the column number and control point number
- Intermediate control points are not sufficient
- \(d - 1 \) affected control points are involved in the computation

Oslo Algorithm

- A subdivision algorithm for B-splines, the basic idea:
 - Take the curve with \(m - 1 \) control points \(P_1 \) to \(P_0 \)
 - Insert a knot in any point \((0.5 \text{ maybe?})\)
 - As a result you will have 2 new points \(P_0^* \) and \(P_1^* \)
 - Take curves with \(m - 1 \) control points \(P_1^* \), \(P_2^* \), \ldots, \(P_{m-1}^* \) and \(P_0 \) and \(P_1 \), \(P_2 \), \ldots, \(P_{m-1} \)
 - Apply procedure recursively on each part
Oslo Algorithm

Barycentric Coordinates

• By Ceva’s Theorem:
 – For any point K inside the triangle ABC
 – Consider the existence of masses \(w_A, w_B, \) and \(w_C \)
 placed at the vertices of the triangle
 – Their center of gravity (barycenter) will coincide with the point K.

 August Ferdinand Möbius (1790-1868) defined (1827)
 \(w_A, w_B, \) and \(w_C \) as the barycentric coordinates of K

 \[K = w_A A + w_B B + w_C C \]

Properties of Barycentric Coordinates

• Not unique
• Can be generalized to negative masses
• Can be made unique by setting
 \[w_A + w_B + w_C = 1 \]

 \[w_C = 1 - w_A - w_B \]

• \(w_A = 0 \) for points on BC
• \(w_B = 0 \) for points on AC
• \(w_C = 0 \) on AB

Calculating the Weights

• Given vertices A, B, C and Centroid K
• What are the weights, \(w_A, w_B, w_C \)?

 \[x_K = w_A x_A + w_B x_B + w_C x_C \]
 \[y_K = w_A y_A + w_B y_B + w_C y_C \]

• Substitute \(w_C = 1 - w_A - w_B \)

 \[x_K = w_A x_A + w_B x_B + (1 - w_A - w_B) x_C \]
 \[y_K = w_A y_A + w_B y_B + (1 - w_A - w_B) y_C \]

Calculating Weights (cont.)

• Solve for \(w_A \) and \(w_B \)

 \[w_A = \frac{(x_B - x_A)(y_C - y_K) - (x_C - x_K)(y_B - y_K)}{(x_A - x_C)(y_B - y_C) - (x_B - x_C)(y_A - y_C)} \]
 \[w_B = \frac{(x_C - x_B)(y_A - y_K) - (x_A - x_K)(y_C - y_K)}{(x_A - x_C)(y_B - y_C) - (x_B - x_C)(y_A - y_C)} \]

• \(w_C = 1 - w_A - w_B \)
Given P, how can we compute weights?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area
 \[w_a = \frac{A_a}{A}, \quad w_b = \frac{A_b}{A}, \quad w_c = \frac{A_c}{A} \]
 Use signed areas for points outside the triangle

\[\text{Area Ta: } \frac{1}{2}(b-P) \times (c-P) \]

Onto...

- Bézier Surfaces
- B-spline Surfaces
- NURBS Surfaces
- Faceting, Subdivision, Tessellation
- 3D Objects

Programming assignment 3

- Input PostScript-like file containing polygons
- Output B/W XPM
- Implement viewports
- Use Sutherland-Hodgman intersection for polygon clipping
- Implement scanline polygon filling. (You can not use flood filling algorithms)