Outline

• Conic Sections via NURBS
• Knot insertion algorithm
• The de Boor’s algorithm
 – for B-Splines
 – for NURBS
• Oslo Algorithm
• Barycentric Coordinates
• Discussion of homework #3
Conic Sections via NURBS

- Obtained via projection of the 3D parabola onto a plane

- Note:
 - 3D Case: rational curve is a 4D object
 - 2D Case: rational curve is a 3D object
 - assign w to each control point

Conic Sections via NURBS

- Define the curve with three control points
- Weights of first/last control points are 1
- For center control point
 - $w<1$ gives an ellipse
 - $w>1$ gives a hyperbola
 - $w=1$ gives a parabola
- Knot vector is $\{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}$

Conic Sections via NURBS: A Circular Arc

- The two sides of the control polygon are of equal length.
- The chord connecting the first and last control points meets each leg at an angle θ equal to half the angular extent of the desired arc (for instance, 30° for a 60° arc).
- The weight of the inner control point is equal to the cosine of θ.
- Knot vector is $\{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}$.
Conic Sections via NURBS: A Circle

• What if we need an arc of >180°?

• Idea:
 – Use multiple 90° or 120° arcs
 – Stitch them together with knots

Example: 3 arcs of 120°

Conic Sections via NURBS

Example:
4 arcs of 90°

$B_3 = \{-1,1,\frac{\sqrt{2}}{2}\}$

$B_4 = \{-1,0,1\}$

$B_5 = \{-1,-1,\frac{\sqrt{2}}{2}\}$

$knots = \left\{0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},1,1,1\right\}$

Knot Insertion

- Issue: More control points mean more control
- How do we add more points and keep same curve?

Knot Insertion

• Basic Approach
 – Decide where we’d like to tweak the curve
 – Add a new knot
 – Find affected d-1 control points
 – Replace it with d new control points

Example:
New knot at $u=2.6$
Knot Insertion

• Given: $n+1$ control points $(P_0, P_1, ..., P_n)$, a knot vector of $m+1$ knots $U = \{ u_0, u_1, ..., u_m \}$ and a degree d B-spline curve $C(u)$.

• Insert a new knot t into the knot vector without changing the shape of the curve.

• If t lies in knot span $[u_k, u_{k+1})$, only the basis functions for $(P_k, ..., P_{k-d})$ are non-zero.

• Find d new control points Q_k on edge $P_{k-1}P_k$, Q_{k-1} on edge $P_{k-2}P_{k-1}$, ..., and Q_{k-d+1} on edge $P_{k-d}P_{k-d+1}$

• All other control points are unchanged.

• Note that $d-1$ control points of the original control polyline are removed and replaced with d new control points.

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Knot Insertion Algorithm

• Create new control point

\[Q_j = (1 - \alpha_j)P_{j-1} + \alpha_j P_j \]

• Where \(\alpha \) is defined as

\[\alpha_j = \frac{t - u_j}{u_{j+d} - u_j} \]

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Properties of Knot Insertion

- Increasing the multiplicity of a knot decreases the number of non-zero basis functions at this knot.
- At a knot of multiplicity d, there will be only one non-zero basis function.
- Corresponding point on the curve $p(u)$ is affected by exactly one control point p_i.
- In fact $p(u)$ is p_i!
The de Boor Algorithm

• Generalization of de Casteljau's algorithm
• It provides a fast and numerically stable way for finding a point on a B-spline curve
• Observation: if a knot \(u \) is inserted \(d \) times to a B-spline, then \(p(u) \) is the point on the curve.
• Idea: \textit{We just simply insert} \(u \) \(d \) times and the \textit{last} point is \(p(u) \)!

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/de-Boor.html
The de Boor Algorithm
De Boor’s Algorithm

If \(u \) lies in \([u_k, u_{k+1})\) and \(u \neq u_k \), let \(h = d \)
If \(u = u_k \) and \(u_k \) is a knot of multiplicity \(s \), let \(h = d - s \)
Copy the affected control points \(p_{k-s}, p_{k-s-1}, \ldots, p_{k-d+1}, p_{k-d} \)
to a new array and rename them as \(p_{k-s,0}, p_{k-s-1,0}, \ldots, p_{k-d+1,0} \)

for \(r := 1 \) to \(h \) do
 for \(i := k-d+r \) to \(k-s \) do
 \{ \n Let \(a_{i,r} = (u - u_i) / (u_{i+d-r+1} - u_i) \)
 Let \(p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i,r-1} \)
 \}

\(p_{k-s,d-s} \) is the point \(p(u) \).
De Boor’s Algorithm (cont)

\[
\text{for } u := 0 \text{ to } u_{\text{max}} \text{ do}
\{
\text{...}
\text{for } r := 1 \text{ to } h \text{ do}
\text{for } i := k-p+r \text{ to } k-s \text{ do}
\{
\text{Let } a_{i,r} = \frac{(u - u_i)}{(u_{i+p-r+1} - u_i)}
\text{Let } p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i,r-1}
\}
\text{p}_{k-s,p-s} \text{ is the point } p(u).
\}
Example of de Boor’s Algorithm

Degree 3 B-spline curve (*i.e.*, $d = 3$)
Defined by seven control points $p_0, ..., p_6$

And knot vector:

<table>
<thead>
<tr>
<th></th>
<th>$u_0 = u_1 = u_2 = u_3$</th>
<th>u_4</th>
<th>u_5</th>
<th>u_6</th>
<th>$u_7 = u_8 = u_9 = u_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>

$u = 0.4$

\[
a_{4,1} = \frac{(u - u_4)}{(u_4 + 3 - u_4)} = 0.2
\]

\[
a_{3,1} = \frac{(u - u_3)}{(u_3 + 3 - u_3)} = \frac{8}{15} = 0.53
\]

\[
a_{2,1} = \frac{(u - u_2)}{(u_2 + 3 - u_2)} = 0.8
\]

\[
p_{4,1} = (1 - a_{4,1})p_{3,0} + a_{4,1}p_{4,0} = 0.8p_{3,0} + 0.2p_{4,0}
\]

\[
p_{3,1} = (1 - a_{3,1})p_{2,0} + a_{3,1}p_{3,0} = 0.47p_{2,0} + 0.53p_{3,0}
\]

\[
p_{2,1} = (1 - a_{2,1})p_{1,0} + a_{2,1}p_{2,0} = 0.2p_{1,0} + 0.8p_{2,0}
\]

\[
a_{4,2} = \frac{(u - u_4)}{(u_4 + 3 - u_4)} = 0.3
\]

\[
a_{3,2} = \frac{(u - u_3)}{(u_3 + 3 - u_3)} = 0.8
\]

\[
p_{4,2} = (1 - a_{4,2})p_{3,1} + a_{4,2}p_{4,1} = 0.7p_{3,1} + 0.3p_{4,1}
\]

\[
p_{3,2} = (1 - a_{3,2})p_{2,1} + a_{3,2}p_{3,1} = 0.2p_{2,1} + 0.8p_{3,1}
\]

\[
a_{4,3} = \frac{(u - u_4)}{(u_4 + 3 - u_4)} = 0.6
\]

\[
p_{4,3} = (1 - a_{4,3})p_{3,2} + a_{4,3}p_{4,2} = 0.4p_{3,2} + 0.6p_{4,2}
\]
Similar but Different

De Casteljau's:
- Dividing points are computed with a pair of numbers \((1 - u)\) and \(u\) that never change
- Can be used for curve subdivision
- Uses all control points

De Boor's
- These pairs of numbers are different and depend on the column number and control point number
- Intermediate control points are not sufficient
- \(d-1\) affected control points are involved in the computation
De Boor’s: Curves
Oslo Algorithm

• A subdivision algorithm for B-splines, the basic idea:
• Take the curve with $m+1$ control points P_0 to P_m
• Insert a knot in any point (0.5 maybe?)
• As a result you will have 2 new points P_k' and P_k''
• Take curves with $m+1$ control points $P_0 \ldots P_k'$, $P_k'' \ldots P_{m-1}$ and $P_1 \ldots P_k', P_k'' \ldots P_m$
• Apply procedure recursively on each part
Oslo Algorithm
Barycentric Coordinates

• By Ceva's Theorem:
 – For any point K inside the triangle ABC
 – Consider the existence of masses w_A, w_B, and w_C, placed at the vertices of the triangle
 – Their center of gravity (barycenter) will coincide with the point K.

• August Ferdinand Moebius (1790-1868) defined (1827) w_A, w_B, and w_C as the barycentric coordinates of K
 • $K = w_A A + w_B B + w_C C$

http://www.cut-the-knot.org/triangle/barycenter.shtml
Properties of Barycentric Coordinates

• Not unique
• Can be generalized to negative masses
• Can be made unique by setting
 \[w_A + w_B + w_C = 1 \]
 \[w_C = 1 - w_A - w_B \]
• \(w_A = 0 \) for points on BC
• \(w_B = 0 \) for points on AC
• \(w_C = 0 \) on AB

http://www.cut-the-knot.org/triangle/barycenter.shtml
Properties of Barycentric Coordinates

- **Vertices’ Barycentric Coordinates**
 - A: (1,0,0)
 - B: (0,1,0)
 - C: (0,0,1)

- **Points inside a triangle**
 \[0 \leq w_A, w_B, w_C \leq 1 \]

- **K = \(w_A \cdot A + w_B \cdot B + w_C \cdot C\)**
Calculating the Weights

- Given vertices A, B, C and Centroid K
- What are the weights, \(w_A, w_B, w_C \)?
 \[
 x_K = w_A x_A + w_B x_B + w_C x_C \\
 y_K = w_A y_A + w_B y_B + w_C y_C \\
 \]
- Substitute \(w_C = 1 - w_A - w_B \)
 \[
 x_K = w_A x_A + w_B x_B + (1 - w_A - w_B)x_C \\
 y_K = w_A y_A + w_B y_B + (1 - w_A - w_B)y_C \\
 \]
Calculating Weights (cont.)

- Solve for w_A and w_B

\[
w_A = \frac{(x_B - x_C)(y_C - y_K) - (x_C - x_K)(y_B - y_C)}{(x_A - x_C)(y_B - y_C) - (x_B - x_C)(y_A - y_C)}
\]

\[
w_B = \frac{(x_A - x_C)(y_C - y_K) - (x_C - x_K)(y_A - y_C)}{(x_B - x_C)(y_A - y_C) - (x_A - x_C)(y_B - y_C)}
\]

- $w_C = 1 - w_A - w_B$
Given P, how can we compute weights?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area

 \[w_A = \frac{A_a}{A}, \quad w_B = \frac{A_b}{A} \quad w_C = \frac{A_c}{A} \]

Use signed areas for points outside the triangle

Area Ta:
\[\frac{|(b-P) \times (c-P)|}{2} \]
Onto…

• Bézier Surfaces
• B-spline Surfaces
• NURBS Surfaces
• Faceting, Subdivision, Tessellation
• 3D Objects
Programming assignment 3

• Input PostScript-like file containing polygons
• Output B/W XPM
• Implement viewports
• Use Sutherland-Hodgman intersection for polygon clipping
• Implement scanline polygon filling. (You can not use flood filling algorithms)