CS 536
Computer Graphics

Introduction
Week 1, Lecture 1
David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Overview
• Course Policies/Issues
• Brief History of Computer Graphics
• The Field of Computer Graphics: A view from 66,000ft
• Structure of this course
• Homework overview
• Introduction and discussion of homework #1

Computer Graphics: Course Goals
• Provide introduction to fundamentals of 2D and 3D computer graphics
 – Representation (curves/surfaces/solids/hierarchical models)
 – Drawing, clipping, transformations and viewing
 – Evaluation of geometric models
 • Convert to Open Inventor for display

Interactive Computer Graphics
CS 537
• Should be offered again next year
• Learn and program WebGL
• Computer Graphics was a pre-requisite
 – Not anymore

Advanced Rendering Techniques
(Advanced Computer Graphics)
• Not sure when it will be offered again
• 3D Computer Graphics
• CS 536 or CS 537 is a pre-requisite
• Implement Ray Tracing algorithm
• Lighting, rendering, photorealism
• Study Radiosity and Photon Mapping

ART Student Images
Computer Graphics:
Technical Material

• Course coverage
 – Mathematical preliminaries
 – 2D lines and curves
 – Geometric transformations
 – Line and polygon drawing
 – 3D viewing, 3D curves and surfaces
 – Bezier & Hermite curves, Splines, B-Splines and NURBS
 – Solid Modeling
 – Hierarchical models
 – Color, hidden surface removal, Z-buffering

Computer Graphics:
Course Management Issues

• All course policies are in the syllabus
• Extensive use of PDF handouts
• Must read email every day
• There will be 7 programming assignments (plan on 8-to-15 hrs)
• Suggestion: print out handouts before class, use them to take notes
• Read and summarize a research paper
• Final exam on material not covered by the programming assignments
• READ THE SYLLABUS!!

Computer Graphics:
Collaboration Policies

• Thou Shall
 – write your own code
 – do your own math
 – attribute any work that is not your own
 – talk amongst yourselves, share ideas
• Thou Shall Not
 – Share/copy code
 – Work in groups
 – Use generative tools
 – Utilize geometry/graphics libraries
• All code will be auto checked for plagiarism
• Violations will result in an automatic F

Go to class web page

CG Technical Areas

• Geometric Modeling
 – Mathematics and algorithms that define 2D and 3D geometric objects

CG Technical Areas

• Human/Computer Interaction
 – Methods for creating graphics data via user input

Surface Drawing, Steven Schkolne
CG Technical Areas

- **Lighting and Shading**
 - Math, physics and algorithms that specify how light interacts with matter

- **Rendering**
 - Algorithms that take geometry, lighting, shading and viewing information and generate an image

- **Visualization**
 - Techniques for visually communicating and exploring scientific, medical or abstract data

- **Perception**
 - Study of how humans perceive light and information

- **Animation**
 - Algorithms for making models change over time

- **Simulation**
 - Using physics to make models move
CG Technical Areas

• Software and Hardware
 – Designing software and hardware systems to implement graphics algorithms

Computer Graphics: In The Beginning

• MIT - 1963
 Ivan Sutherland’s Sketchpad
 • Modified oscilloscope for drawing
 • The original CAD system

Computer Graphics from 66,000 ft

• Display types
• Display/Rendering algorithms
• Application areas
 – Entertainment
 – CAD/CAM
 – Scientific & medical visualization
 – Training & education
 – Synthetic realities
 – Art & design
 – Games

2D Graphics

• Raster:
 • Pixels
 – X11 bitmap, XBM
 – X11 pixmap, XPM
 – GIF
 – PNG
 – JPG
 Lossy, jaggies when transforming, good for photos.

• Vector:
 • Drawing instructions
 – Postscript
 – CGM
 – Fig
 – DVS
 Non-lossy, smooth when scaling, good for line art and diagrams.

Adobe Photoshop: 2D Raster Graphics
2D Raster Graphics

Adobe Illustrator: 2D Vector Graphics

2D Vector Graphics

3D Rendering

• 1960s - the visibility problem
 - Roberts (1963), Appel (1967) - hidden-line algorithms
 - Sutherland (1974) - visibility = sorting

• 1970s - raster graphics
 - Gouraud (1971) - diffuse lighting
 - Phong (1974) - specular lighting
 - Blinn (1974) - curved surfaces, texture
 - Crow (1977) - anti-aliasing

3D Rendering

Toward Reality in the 1980s

• global illumination
 - Whitted (1980) - ray tracing
 - Cook & Torrance et al. (1984), Eberl (1985) - radiosity
 - Kajiya (1986) - the rendering equation

• photorealism
 - Cook & Torrance (1982) - rough surface reflectance
 - Cook (1984) - shade trees
 - Fong (1985) - shading impurities
 - Rindzevich and Lavaron (1986) - RenderMan
Away from Reality

- early 1990s - non-photorealistic rendering
 - Drexel et al. (1988)
 - Levoy (1988) - volume rendering
 - Hashiba (1990) - impressionistic paint programs
 - Sasein et al. (1994) - automatic pen-and-ink illustration
 - Meier (1996) - painterly rendering

And Back Again

- late 1990s & 2000s - photon mapping, subsurface scattering and participating medium
 - H. Wann Jensen

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games

Application Areas

- Entertainment
- CAD/CAM
- Scientific & Medical Visualization
- Training & Education
- Synthetic Realities
 - VR, AR, etc.
- Art and design
- Games
Application Areas

- Entertainment
- CAD/CAM
- Scientific visualization
- Training & Education
- Synthetic Realities – VR, AR, etc.
- Art and design
- Games

Programming Assignments

- No APIs: OpenGL, GLUT, Mesa, DirectX...
- May use math (vector/matrix), argument processing and Open Inventor writing libraries
- Just compute lines and polygons from higher-level descriptions
 - Sorry, no color until ICG or ART
- Output in the form of Open Inventor
 - A standard (now a bit out-of-fashion) for 3D graphics
- Program source (and makefile/script) turned in via Bb Learn
- Executable/Programs MUST RUN ON Linux (tux)
- Whatever language you want, so long as the TA can run code on tux (c, c++, java, python, ...)

For programming assignments

- Use Open Inventor as your graphics representation
- We will be evaluating a variety of 3D graphics primitives
- GPUs can (only) display lines and polygons. So higher-level geometry descriptions need to be converted into these lower-level primitives
- Tip: Renew your friendship with your linear algebra & multi-variate calculus textbook
- Read homeworks ahead. It will help you to structure your code for future requirements.
Assignment Dependencies

• Every HW – Read in geometry parameters and write out (to standard out) Open Inventor
 • HW1 – Evaluates arbitrary-degree Bezier curves
 • HW2 – Link together cubic Bezier curves from HW1
 • HW3 – Evaluates bicubic Bezier patch
 • HW4 – Evaluates surface of revolution
 • HW5 – Union of two polygons
 • HW6 – Evaluate a (biparametric) superellipsoid. Similar to HW4
 • HW7 – Evaluate a hierarchical model consisting of cuboids
 • EC – Evaluate points on the surface of a CSG model

Data Structures

• Control points and tangents
• 3D Polylines
• 3D Polygons (vertices, edges, faces and normals)
• Triangle mesh (topology of mesh)
• Model hierarchy

When it’s all over!

Don’t forget ICG & ART!

Programming Assignment 1

• Input list of 3D control points
• Output polyline & spheres as Open Inventor
• Primary output format for the course
• Create data structures to hold control points and polyline
• Implement code to evaluate (i.e., compute points on) an arbitrary-degree 3D Bezier curve
• Draw spheres at control point locations
• Due April 19th
• Get started now!