Outline

• Conic Sections via NURBS
• Knot insertion algorithm
• The de Boor’s algorithm
 – for B-Splines
 – for NURBS
• Oslo Algorithm
• Barycentric Coordinates
• Discussion of homework #2
Conic Sections via NURBS

• Obtained via projection of the 3D parabola onto a plane

• Note:
 – 3D Case: rational curve is a 4D object
 – 2D Case: rational curve is a 3D object
 – assign \(w \) to each control point

Conic Sections via NURBS

- Define the curve with three control points
- Weights of first/last control points are 1
- For center control point
 - \(w<1 \) gives an ellipse
 - \(w>1 \) gives a hyperbola
 - \(w=1 \) gives a parabola
 - Knot vector is \{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}

Conic Sections via NURBS: A Circular Arc

- The two sides of the control polygon are of equal length.
- The chord connecting the first and last control points meets each leg at an angle \(\theta \) equal to half the angular extent of the desired arc (for instance, 30° for a 60° arc).
- The weight of the inner control point is equal to the cosine of \(\theta \).
- Knot vector is \{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}

Conic Sections via NURBS: A Circle

• What if we need an arc of >180°?

• Idea:
 – Use multiple 90° or 120° arcs
 – Stitch them together with knots

Example:
3 arcs of 120°

Conic Sections via NURBS

Example:
4 arcs of 90°

\[B_3 = \{-1, 1, 1/\sqrt{2}\} \]
\[B_4 = \{-1, 0, 1\} \]
\[B_5 = \{-1, -1, 1/\sqrt{2}\} \]
\[B_6 = \{0, -1, 1\} \]
\[B_7 = \{1, -1, 1/\sqrt{2}\} \]
\[B_8 = \{1, 0, 1\} \]

\[B_2 = \{0, 1, 1\} \]

knots = \[\{0, 0, 0, 1/4, 1/4, 1/2, 3/4, 3/4, 1, 1, 1\}\]

Knot Insertion

- **Issue**: More control points mean more control
- **How do we add more points and keep same curve?**

Knot Insertion

- **Basic Approach**
 - Decide where we’d like to tweak the curve
 - Add a new knot
 - Find affected $d-1$ control points
 - Replace it with d new control points

Example:
New knot at $u=2.6$
Knot Insertion

• Given: \(n+1\) control points \((P_0, P_1, ..., P_n)\), a knot vector of \(m+1\) knots \(U = \{ u_0, u1, ..., u_m \}\) and a degree \(d\) B-spline curve \(C(u)\).

• Insert a new knot \(t\) into the knot vector without changing the shape of the curve.

• If \(t\) lies in knot span \([u_k, u_{k+1})\), only the basis functions for \((P_k, ..., P_{k-d})\) are non-zero.

• Find \(d\) new control points \(Q_k\) on edge \(P_{k-1}P_k\), \(Q_{k-1}\) on edge \(P_{k-2}P_{k-1}\), ..., and \(Q_{k-d+1}\) on edge \(P_{k-d}P_{k-d+1}\).

• All other control points are unchanged.

• Note that \(d-1\) control points of the original control polyline are removed and replaced with \(d\) new control points.

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Knot Insertion Algorithm

- Create new control point

\[Q_j = (1 - \alpha_j)P_{j-1} + \alpha_jP_j \]

- Where \(\alpha \) is defined as

\[
\alpha_j = \frac{t - u_j}{u_{j+d} - u_j}
\]

Properties of Knot Insertion

• Increasing the multiplicity of a knot decreases the number of non-zero basis functions at this knot.
• At a knot of multiplicity d, there will be only one non-zero basis function.
• Corresponding point on the curve $p(u)$ is affected by exactly one control point p_i.
• In fact $p(u)$ is p_i!
The de Boor Algorithm

- Generalization of de Casteljau's algorithm
- It provides a fast and numerically stable way for finding a point on a B-spline curve
- Observation: if a knot \(u \) is inserted \(d \) times to a B-spline, then \(p(u) \) is the point on the curve.
- Idea: We just simply insert \(u \) \(d \) times and the last point is \(p(u) \)!

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/de-Boor.html
The de Boor Algorithm
De Boor’s Algorithm

If u lies in $[u_k, u_{k+1})$ and $u \neq u_k$, let $h = d$
If $u = u_k$ and u_k is a knot of multiplicity s, let $h = d - s$
Copy the affected control points p_{k-s}, p_{k-s-1}, ..., p_{k-d+1}, p_{k-d}
to a new array and rename them as $p_{k-s,0}$, $p_{k-s-1,0}$, ..., $p_{k-d+1,0}$

for $r := 1$ to h do
 for $i := k-d+r$ to $k-s$ do
 \{
 Let $a_{i,r} = (u - u_i) / (u_{i+d-r+1} - u_i)$
 Let $p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i,r-1}$
 \}

$p_{k-s,d-s}$ is the point $p(u)$.

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
De Boor’s Algorithm (cont)

\[
\text{for } u := 0 \text{ to } u_{\text{max}} \text{ do} \\
\{ \\
\quad \ldots \\
\quad \text{for } r := 1 \text{ to } h \text{ do} \\
\quad \quad \text{for } i := k-p+r \text{ to } k-s \text{ do} \\
\quad \quad \quad \{ \\
\quad \quad \quad \quad \text{Let } a_{i,r} = \frac{(u - u_i)}{(u_{i+p-r+1} - u_i)} \\
\quad \quad \quad \quad \text{Let } p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i-1,r-1} \\
\quad \quad \quad \} \\
\quad \quad p_{k-s,p-s} \text{ is the point } p(u). \\
\}
\]
Example of de Boor’s Algorithm

Degree 3 B-spline curve (i.e., \(d = 3\))
Defined by seven control points \(p_0, \ldots, p_6\)
And knot vector:

<table>
<thead>
<tr>
<th>(u_0 = u_1 = u_2 = u_3)</th>
<th>(u_4)</th>
<th>(u_5)</th>
<th>(u_6)</th>
<th>(u_7 = u_8 = u_9 = u_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>

\(a_{4,1} = (u - u_4) / (u_{4+3} - u_4) = 0.2\)
\(a_{3,1} = (u - u_3) / (u_{3+3} - u_3) = 8/15 = 0.53\)
\(a_{2,1} = (u - u_2) / (u_{2+3} - u_2) = 0.8\)
\(p_{4,1} = (1 - a_{4,1})p_{3,0} + a_{4,1}p_{4,0} = 0.8p_{3,0} + 0.2p_{4,0}\)
\(p_{3,1} = (1 - a_{3,1})p_{2,0} + a_{3,1}p_{3,0} = 0.47p_{2,0} + 0.53p_{3,0}\)
\(p_{2,1} = (1 - a_{2,1})p_{1,0} + a_{2,1}p_{2,0} = 0.2p_{1,0} + 0.8p_{2,0}\)

\(a_{4,2} = (u - u_4) / (u_{4+3-1} - u_4) = 0.3\)
\(a_{3,2} = (u - u_3) / (u_{3+3-1} - u_3) = 0.8\)
\(p_{4,2} = (1 - a_{4,2})p_{3,1} + a_{4,2}p_{4,1} = 0.7p_{3,1} + 0.3p_{4,1}\)
\(p_{3,2} = (1 - a_{3,2})p_{2,1} + a_{3,2}p_{3,1} = 0.2p_{2,1} + 0.8p_{3,1}\)

\(a_{4,3} = (u - u_4) / (u_{4+3-2} - u_4) = 0.6\)
\(p_{4,3} = (1 - a_{4,3})p_{3,2} + a_{4,3}p_{4,2} = 0.4p_{3,2} + 0.6p_{4,2}\)

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
Similar but Different

De Casteljau's:
- Dividing points are computed with a pair of numbers \((1 - u)\) and \(u\) that never change.
- Can be used for curve subdivision.
- Uses *all* control points.

De Boor's:
- These pairs of numbers are different and depend on the column number and control point number.
- Intermediate control points are not sufficient.
- \(d-1\) affected control points are involved in the computation.
De Boor’s: Curves
Oslo Algorithm

- A subdivision algorithm for B-splines, the basic idea:
- Take the curve with \(m+1 \) control points \(P_0 \) to \(P_m \)
- Insert a knot in any point (0.5 maybe?)
- As a result you will have 2 new points \(P_k' \) and \(P_k'' \)
- Take curves with \(m+1 \) control points \(P_0 \ldots P_k', P_k'' \ldots P_{m-1} \) and \(P_1 \ldots P_k', P_k'' \ldots P_m \)
- Apply procedure recursively on each part
Oslo Algorithm

Recorded from: http://heim.ifi.uio.no/~trondbre/OsloAlgApp.html
Barycentric Coordinates

• By Ceva's Theorem:
 – For any point K inside the triangle ABC
 – Consider the existence of masses w_A, w_B, and w_C, placed at the vertices of the triangle
 – Their center of gravity (barycenter) will coincide with the point K.

• August Ferdinand Moebius (1790-1868) defined (1827) w_A, w_B, and w_C as the barycentric coordinates of K

• $K = w_A A + w_B B + w_C C$

http://www.cut-the-knot.org/triangle/barycenter.shtml
Properties of Barycentric Coordinates

• Not unique
• Can be generalized to negative masses
• Can be made unique by setting
 \[w_A + w_B + w_C = 1 \]
 \[w_A = 0 \] for points on BC
 \[w_B = 0 \] for points on AC
 \[w_C = 0 \] on AB

http://www.cut-the-knot.org/triangle/barycenter.shtml
Locating the Point in Barycentric Coordinates

- Given \(K \), find location of \(D \)
- Compute \(D \) as a center of mass of \(B \) and \(C \)
- \(|BD|*w_B = |DC|*w_C\)
- Compute \(K \) as a center of mass of \(A \) and \(D \)
- \(|AK|*w_A = |KD|*w_D\)

http://www.cut-the-knot.org/triangle/barycenter.shtml
Calculating the Weights

• Given vertices A, B, C and Centroid K
• What are the weights, \(w_A, w_B, w_C \)?
 \[
 x_K = w_A x_A + w_B x_B + w_C x_C \\
 y_K = w_A y_A + w_B y_B + w_C y_C \\
 \]
• Substitute \(w_C = 1 - w_A - w_B \)
 \[
 x_K = w_A x_A + w_B x_B + (1 - w_A - w_B) x_C \\
 y_K = w_A y_A + w_B y_B + (1 - w_A - w_B) y_C \\
 \]
Calculating Weights (cont.)

• Solve for w_A and w_B

\[
\begin{align*}
w_A &= \frac{(x_B - x_C)(y_C - y_K) - (x_C - x_K)(y_B - y_C)}{(x_A - x_C)(y_B - y_C) - (x_B - x_C)(y_A - y_C)} \\
w_B &= \frac{(x_A - x_C)(y_C - y_K) - (x_C - x_K)(y_A - y_C)}{(x_B - x_C)(y_A - y_C) - (x_A - x_C)(y_B - y_C)}
\end{align*}
\]

• $w_C = 1 - w_A - w_B$
Given P, how can we compute \(\alpha, \beta, \gamma \)?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area
 \[
 \alpha = \frac{A_a}{A}, \quad \beta = \frac{A_b}{A} \quad \gamma = \frac{A_c}{A}
 \]

Use signed areas for points outside the triangle

Area \(Ta \):
\[
\frac{|(b-P) \times (c-P)|}{2}
\]
Programming Assignment 2

• Process command-line arguments
• Read in 3D input points and tangents
• Compute tangents at interior input points
• Modify tangents with tension parameter
• Compute Bezier control points for curves defined by each two input points
• Use HW1 code to compute points on each Bezier curve
• Each Bezier curve should be a polyline
• Output points by printing them to the console as an IndexedLineSet with multiple polylines, and control points as spheres in Open Inventor format