Overview
• 3D model representations
• Mesh formats
• Bicubic surfaces
• Bezier surfaces
• Normals to surfaces
• Direct surface rendering

Representing 3D Objects
• Exact
 – Wireframe
 – Parametric Surface
 – Solid Model
 • CSG
 • BRep
 • Implicit Solid Modeling
• Approximate
 – Face / Mesh
 – Just surfaces
 – Voxel
 – Volume info

Positives when Representing 3D Objects
• Exact
 – Precision
 • Simulation, modeling, etc.
 • Lots of modeling environments
 • Physical properties
 • High-level control
 • Many applications (tool path generation, motion, etc.)
 – Compact
• Approximate
 – Easy to implement
 – Easy to acquire
 • 3D scanner, CT
 – Easy to render
 • Direct mapping to the graphics pipeline
 • Lots of algorithms

3D Modeling
• 3D Representations
 – Wireframe models
 – Surface Models
 – Solid Models
 – Meshes and Polygon soups
 – Voxel/Volume models
 – Decomposition-based
 • Octrees, voxels
• Modeling in 3D
 – Constructive Solid Geometry (CSG), BReps and feature-based

Representing 3D Objects
• Exact
 – Precise model of object topology
 – Mathematically represent all geometry
• Approximate
 – A discretization of the 3D object
 – Use simple primitives to model topology and geometry
Negatives when Representing 3D Objects

- Exact
 - Complex data structures
 - Expensive algorithms
 - Wide variety of formats, each with subtle nuances
 - Hard to acquire data
 - Translation required for rendering

- Approximate
 - Lossy
 - Data structure sizes can get huge, if you want good fidelity
 - Easy to break (i.e. cracks can appear)
 - Not good for certain applications
 - Loss of interpolation and guess work

Exact Representations

- Wireframe
- Parametric Surface
- Solid Model
 - operations
 - CSG, BRep, implicit geometry

Wireframes

- Basic idea:
 - Represent the model as the set of all of its edges
- Example:
 - A simple cube
 - 12 lines
 - 8 vertices
- How about the faces?

Issues with Wireframes

- Visually ambiguous
- No surfaces!
 - What’s inside? What’s outside?
 - Hidden line removal?
- What does validity entail?
 - Don’t we just have a bunch of wires?
 - Do they need to add up to something?
- How to model wireframe shapes?
 - Wire by wire? Not very easy!

Surface Models

- Basic idea:
 - Represent a model as a set of faces/patches
- Limitations:
 - Topological integrity, how do faces "line up"?, which way is "inside" / "outside"?
- Used in many CAD applications
 - Why? They are fine for drafting and rendering, not as good for creating true physical models

3D Mesh File Formats

Some common formats
- STL
- SMF
- OpenInventor
- VRML
- X3D
Minimal
- Vertex + Face
- No colors, normals, or texture
- Primarily used to demonstrate geometry algorithms

Full-Featured
- Colors / Transparency
- Vertex-Face Normals (optional can be computed)
- Scene Graph
- Lights
- Textures
- Views and Navigation

Simple Mesh Format (SMF)
- Michael Garland
 - http://graphics.cs.uiuc.edu/~garland/
- Triangle data
- Vertex indices begin at 1

Stereolithography (STL)
- Triangle data + Face Normal
- The de-facto standard for rapid prototyping

Open Inventor
- Developed by SGI
- Predecessor to VRML
 - Scene Graph

Virtual Reality Modeling Language (VRML)
- SGML Based
- Scene-Graph
- Full Featured
X3D
- Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
- Supports
 - 2D/3D graphics, programmable shaders
 - 2D/3D compositing, CAD data, Animation
 - Spatialized audio and video, User interaction
 - Navigation, Scripting, Networking, Simulation
- See www.web3d.org for more info

Issues with 3D “mesh” formats
- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc

BRep Data Structures
- Winged-Edge Data Structure (Weiler)
 - Vertex
 - n edges
 - Edge
 - 2 vertices
 - 2 faces
 - Face
 - m edges

BRep Data Structure
- Vertex structure
 - X,Y,Z point
 - Pointers to n coincident edges
- Face structure
 - Pointers to m edges
- Edge structure
 - X,Y,Z point
 - Pointers to end-point vertices
 - Pointers to n coincident edges
 - Pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge

Biparametric Surfaces
- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: x, t (or u, v)
 - Two parametric functions

Biparametric Patch
- (u,v) pair maps to a 3D point on patch
 \[
 F(u,v) = (x,y,z) = (x(u,v), y(u,v), z(u,v))
 \]
Bicubic Surfaces

- Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \([s^3 s^2 s 1]\)
- For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:

\[
Q(s, t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S
\]

Observations About Bicubic Surfaces

- For a fixed \(t_1 \), \(Q(s, t_1) \) is a curve
- Gradually incrementing \(t_1 \) to \(t_2 \), we get a new curve
- The combination of these curves is a surface
- \(G(t) \) are 3D curves

Bicubic Surfaces

- Each \(G(t) \) is \(G(t) = G_s \cdot M \cdot T \), where

\[
G_s = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 \end{bmatrix}
\]
- Transposing \(G(t) \), we get

\[
G(t) = T^T \cdot M^T \cdot G_s^T
\]

\[
= T^T \cdot M^T \cdot \begin{bmatrix} s_1 & s_2 & s_3 & s_4 \end{bmatrix}^T
\]

Bicubic Surfaces

- Substituting \(G(t) \) into \(Q(s) = G \cdot M \cdot S \), we get \(Q(s, t) \)
- The \(g_{ij} \), etc. are the control points for the Bicubic surface patch:

\[
Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix} s_{11} & s_{21} & s_{31} & s_{41} \\
 s_{12} & s_{22} & s_{32} & s_{42} \\
 s_{13} & s_{23} & s_{33} & s_{43} \\
 s_{14} & s_{24} & s_{34} & s_{44} \end{bmatrix} \cdot M \cdot S
\]

Bicubic Surfaces

- Writing out gives

\[
x(s, t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S
\]

\[
y(s, t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S
\]

\[
z(s, t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S
\]

Bicubic Bézier Patch

- Bézier Surfaces (similar definition)

\[
x(s, t) = T^T \cdot M^T \cdot G_B \cdot M_B \cdot S
\]

\[
y(s, t) = T^T \cdot M^T \cdot G_B \cdot M_B \cdot S
\]

\[
z(s, t) = T^T \cdot M^T \cdot G_B \cdot M_B \cdot S
\]
Bicubic Bezier Patch

Using data array \(P = \{p_{ij}\} \)

\[
\hat{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{ij} b_i(u) b_j(v) u^{3-i} v^{3-j}
\]

\(\rho_p(\hat{p}(u,v)) = i \rho_p(u) + j \rho_p(v) + \text{etc.} \)

\(0 \leq u, v \leq 1 \)

Cubic Bezier Blending Functions

\[
b(u) = \begin{cases}
1 - u)^3 & \text{if } u \leq 1 \\
3(1-u)^2u & \text{if } 1 < u \leq 2 \\
3u^2(1-u) & \text{if } 2 < u \leq 3 \\
u^3 & \text{if } 3 < u
\end{cases}
\]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs

Bezier Patch Matrix Form

\[
P(u,v) = u^T M_B P M_B^T v
\]

\[
= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ -1 & -3 & 3 & -1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
\]

Plotting Isolines
Faceting Animation

- Double loop that increments through the u and v parameters
 - Values between 0 and 1
- For each (u,v) pair calculate 3D point on patch. Keep track of linear index.
- This produces a 2-D array of 3D points on the patch and their indices to the linear array
- Define triangles that tessellate the patch

Defining the Triangles

```cpp
// This assumes that indices to the vertices are
// in a 2D array, verts(i,j)

num_tri = 0
for i = 0 to (num_u - 2)
  for j = 0 to (num_v - 2)
    triangles[num_tri++] = (verts[i,j], verts[i+1,j], verts[i+1,j+1])
    triangles[num_tri++] = (verts[i,j], verts[i+1,j+1], verts[i,j+1])
```

Composite Bézier Surfaces

- C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- G^1 continuity achieved when cross-wise CPs are co-linear
Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with G^1 continuity

47

Bezier Surface: Example

- Increased facet resolution
- Rendered

48

B-spline Surfaces

\[
x(s,t) = T^T \cdot M^b_{st} \cdot G_{st} \cdot M_{st} \cdot S
\]
\[
y(s,t) = T^T \cdot M^b_{st} \cdot G_{st} \cdot M_{st} \cdot S
\]
\[
z(s,t) = T^T \cdot M^b_{st} \cdot G_{st} \cdot M_{st} \cdot S
\]
- Representation for B-spline patches
- C^1 continuity across boundaries is automatic with B-splines

49

Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining

50

Computing the Normals to Surfaces

- For a bicubic surface, first, compute the s tangent vector

\[
\frac{\delta}{\delta s} Q(s,t) = \frac{\delta}{\delta s} \left(T^T \cdot M^b_{st} \cdot G \cdot M \cdot S \right)
= T^T \cdot M^b_{st} \cdot G \cdot M \cdot \frac{\delta}{\delta s} S
= T^T \cdot M^b_{st} \cdot G \cdot M \cdot \left[3s^2 \quad 2s \quad 1 \quad 0 \right]
\]

51

Computing the Normals to Surfaces

- Next, compute the t tangent vector:

\[
\frac{\delta}{\delta t} Q(s,t) = \frac{\delta}{\delta t} \left(T^T \cdot M^b_{st} \cdot G \cdot M \cdot S \right)
= \frac{\delta}{\delta t} \left(T^T \cdot M^b_{st} \cdot G \cdot M \cdot S \right)
= \frac{\delta}{\delta t} \left(T^T \right) \cdot M^b_{st} \cdot G \cdot M \cdot S
= \left[3t^2 \quad 2t \quad 1 \quad 0 \right]^T \cdot M^b_{st} \cdot G \cdot M \cdot S
\]

52
Computing the Normals to Surfaces

- Since s and t are tangent to the surface, their cross product is the normal vector to the surface!

\[
\frac{\partial}{\partial s} Q(s,t) \times \frac{\partial}{\partial t} Q(s,t) = [x_s - y_t, y_s - z_t, z_s - x_t]
\]

- x_s - x component of s tangent
- y_s - y component of s tangent
- z_s - z component of s tangent

Surface of Revolution

- Rotate planar curve (directrix) around an axis of revolution (z axis)
 - Cross-section is a circle
- Biparametric surface
 - u of curve
 - θ of angle of rotation
- Examples: cylinder, cone, sphere, torus

Surface of Revolution

- Directrix:
 - $D(u) = (f(u), 0, g(u))$
- Surface:
 - $S(u, \theta) = (f(u)\cos(\theta), f(u)\sin(\theta), g(u))$
 - $0 \leq u \leq 1, 0 \leq \theta \leq 2\pi$
- Tangents:
 - $\frac{\partial S}{\partial u} = (f'(u)\cos(\theta), f'(u)\sin(\theta), g'(u))$
 - $\frac{\partial S}{\partial \theta} = (-f(u)\sin(\theta), f(u)\cos(\theta), 0)$
 - $N(u, \theta) = \frac{\partial S}{\partial u} \times \frac{\partial S}{\partial \theta}$

Drawing Parametric Surfaces

- Usually done “patch by patch”
- Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh

Direct Rendering

- Use a scan-line algorithm
 - Evaluate pixel by pixel
 - Problem: How to go from (x,y) “screen space” to point on the 3D patch
 - Easy for a planar polygon where we know max/min y, equations for edges, screen depth
 - Not as easy for parametric surfaces
Issues for Direct Rendering

- Max/Min y coords may not lie on boundaries
- Silhouette edges result from patch bulges
 - Need to track both silhouettes and boundaries
 - What if they intersect?
- Note: patch edges need not be monotonic in x or y
- Idea: Scan convert patch plane-by-plane, using scan planes instead of scan lines

Direct Scan Conversion of Patches

- Basic idea
 - Find intersection of patch with XZ plane
 - Producing a planar curve
 - Draw the curve
 - De Boor, D' Casteljeau
- Note: if doing rendering, one can compute pixel-by-pixel color values this way
- Patch: \(x=X(u,v), y=Y(u,v), z=Z(u,v) \)

Patch to Polygon Conversion

Two methods:
- **Object Space Conversion**
 - Techniques
 - Iterative evaluation
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space
- **Image Space Conversion**
 - Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure
- Cut parameter space into equal parts
- Find new points on the surface
- Recurse/Repeat “until done”
- Split squares into triangles
- Render

Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes

Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel
How do I know if I’ve found a silhouette edge?

- If the viewing ray is tangent to the surface at the point it hits the surface!

\[N(x) \cdot L = 0 \]

- Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface

Silhouette Determination

Programming Assignment 3

- Process command line arguments
- Read in control points from file
- Double loop through \(u \) & \(v \) parameters
- For each \((u,v)\) pair compute 3D point on Bezier patch
- Once you’ve computed the 3D points, define the triangles that connect them
- If shading, compute exact normals at each mesh vertex
- Output all data as Open Inventor