Hierarchical Models

Week 9, Lecture 19

David Breen
Department of Computer Science
Drexel University

Objectives
- Examine the limitations of linear modeling
 - Symbols and instances
- Introduce hierarchical models
 - Articulated models
 - Robots
- Introduce Tree and DAG models

Instance Transformation
- Start with a prototype object (a symbol)
- Each appearance of the object in the model is an instance
 - Must scale, orient, position
 - Defines instance transformation

Symbol-Instance Table
- Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation

Relationships in Car Model
- Symbol-instance table does not show relationships between parts of model
- Consider model of car
 - Chassis + 4 identical wheels
 - Two symbols
- Rate of forward motion determined by rotational speed of wheels

Structure Through Function Calls
- car(speed)

 chassis()
 wheel(right_front);
 wheel(left_front);
 wheel(right_rear);
 wheel(left_rear);

 - Fails to show relationships well
 - Look at problem using a graph
Graphs

- Set of nodes and edges (links)
- Edge connects a pair of nodes
 - Directed or undirected
- Cycle: directed path that is a loop

Tree

- Graph in which each node (except the root) has exactly one parent node
 - May have multiple children
 - Leaf or terminal node: no children

Tree Model of Car

DAG Model

- If we use the fact that all the wheels are identical, we get a directed acyclic graph
 - Not much different than dealing with a tree

Modeling with Trees

- Must decide what information to place in nodes and what to put in edges
- Nodes
 - What to draw
 - Pointers to children
- Edges
 - May have information on incremental changes to transformation matrices (can also store in nodes)

Robot Arm

- robot arm parts in their own coordinate systems
Articulated Models

- Robot arm is an example of an articulated model
 - Parts connected at joints
 - Can specify state of model by giving all joint angles

Relationships in Robot Arm

- Base rotates independently
 - Single angle determines position
- Lower arm attached to base
 - Its position depends on rotation of base
 - Must also translate relative to base and rotate about connecting joint
- Upper arm attached to lower arm
 - Its position depends on both base and lower arm
 - Must translate relative to lower arm and rotate about joint connecting to lower arm

Required Matrices

- Rotation of base: \(R_b \)
 - Apply \(M = R_b \) to base
- Translate lower arm relative to base: \(T_{lu} \)
- Rotate lower arm around joint: \(R_{lu} \)
 - Apply \(M = R_b T_{lu} R_{lu} \) to lower arm
- Translate upper arm relative to lower arm: \(T_{uu} \)
- Rotate upper arm around joint: \(R_{uu} \)
 - Apply \(M = R_b T_{lu} R_{lu} T_{uu} R_{uu} \) to upper arm

OpenGL Code for Robot

```c
mat4 ctm; // current transformation matrix
robot_arm()
{
  ctm = RotateY(theta);
  base();
  ctm *= Translate(0.0, h1, 0.0);
  ctm *= RotateZ(phi);
  lower_arm();
  ctm *= Translate(0.0, h2, 0.0);
  ctm *= RotateZ(psi);
  upper_arm();
}
```

OpenGL Code for Robot

- At each level of hierarchy, calculate \(ctm \) matrix in application.
- Send matrix to shaders
- Apply \(ctm \) matrix in shader
- Draw geometry for one level of hierarchy

Tree Model of Robot

- Note code shows relationships between parts of model
 - Can change “look” of parts easily without altering relationships
- Simple example of tree model
- Want a general node structure for nodes
Possible Node Structure

- Code for drawing part or pointer to drawing function
- Linked list of pointers to children
- Matrix relating node to parent

Generalizations

- Need to deal with multiple children
 - How do we represent a more general tree?
 - How do we traverse such a data structure?
- Animation
 - How to use dynamically?
 - Can we create and delete nodes during execution?

Objectives

- Build a tree-structured model of a humanoid figure
- Examine various traversal strategies
- Build a generalized tree-model structure that is independent of the particular model

Building the Model

- Can build a simple implementation using quadrics: ellipsoids and cylinders
- Access parts through functions
 - torso()
 - left_upper_arm()
- Matrices describe position of node with respect to its parent
 - M_l positions left lower arm with respect to left upper arm

Tree with Matrices

- M_l positions left lower arm with respect to left upper arm
- Matrices describe position of node with respect to its parent
- M_l positions left lower arm with respect to left upper arm

Humanoid Figure

- Model structure that is independent of the particular model

- Matrices describe position of node with respect to its parent
Display and Traversal

- The position of the figure is determined by 11 joint angles (two for the head and one for each other part)
- Display of the tree requires a graph traversal
 - Visit each node once
 - Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation

Transformation Matrices

- There are 10 relevant matrices
 - M positions and orients entire figure through the torso which is the root node
 - M_h positions head with respect to torso
 - M_lua, M_rua, M_lul, M_rul position arms and legs with respect to torso
 - M_lla, M_rla, M_lla, M_rll position lower parts of limbs with respect to corresponding upper limbs

Stack-based Traversal

- Set model-view matrix to M and draw torso
- Set model-view matrix to M_h and draw head
- For left-upper arm need M_mua and so on
- Rather than recomputing M_mua from scratch or using an inverse matrix, we can use the matrix stack to store M and other matrices as we traverse the tree

Traversal Code

```c
figure() {
    PushMatrix();
    torso();
    Rotate(...);
    head();
    PopMatrix();
    PushMatrix();
    Translate(...);
    Rotate(...);
    left_upper_arm();
    PopMatrix();
    save present currents xform matrix
    update ctm for head
    recover original ctm
    PopMatrix();
    save it again
    PushMatrix();
    Translate(...);
    Rotate(...);
    left_upper_arm();
    PopMatrix();
    recover and save original ctm again
    PushMatrix();
    rest of code
}
```

Analysis

- The code describes a particular tree and a particular traversal strategy
 - Can we develop a more general approach?
- Note that the sample code does not include state changes, such as changes to colors
 - May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code

General Tree Data Structure

- Need a data structure to represent tree and an algorithm to traverse the tree
- We will use a left-child right sibling structure
 - Uses linked lists
 - Each node in data structure has two pointers
 - Left: linked list of children
 - Right: next node (i.e. siblings)
Tree node Structure

- At each node we need to store
 - Pointer to sibling
 - Pointer to child
 - Pointer to a function that draws the object represented by the node
 - Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
 - Represents changes going from parent to node
 - In OpenGL this matrix is a 1D array storing matrix by columns

C Definition of treenode

```c
typedef struct treenode
{
    mat4 m;
    void (*f)();
    struct treenode *sibling;
    struct treenode *child;
} treenode;
```

C Definition of torso and head nodes

```c
treenode torso_node, head_node, lua_node, ...

torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = &head_node;

head_node.m = translate(0.0, TORSO_HEIGHT+0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[1])*RotateY(theta[2]);
head_node.f = head;
head_node.sibling = &lua_node;
head_node.child = NULL;
```

Notes

- The position of figure is determined by 11 joint angles stored in theta[11]
- Animate by changing the angles and redisplaying
- We form the required matrices using `Rotate` and `Translate`
 - Because the matrix is formed using the model-view matrix, we may want to first push original model-view matrix on matrix stack

Preorder Traversal

```c
void traverse(treenode* root)
{
    if(root=NULL) return;
    mvstack.push(ctm);
    ctm = ctm*root->m;
    root->f();
    if(root->child!=NULL) traverse(root->child);
    ctm = mvstack.pop();
    if(root->sibling!=NULL)
        traverse(root->sibling);
}
```
Notes

- We must save current transformation matrix before multiplying it by node matrix.
 - Updated matrix applies to children of node but not to siblings which contain their own matrices.
- The traversal program applies to any left-child right-sibling tree.
 - The particular tree is encoded in the definition of the individual nodes.
- The order of traversal matters because of possible state changes in the functions.

Homework 7

- Create models for links (P0, P1, P2 & P3).
- Draw base model (P0).
- \(\mathbf{M} = T_x(L0) \mathbf{R}_y(\theta_1) \) \(\mathbf{M} = \mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M} \).
- Apply transformation matrix \(\mathbf{M} \) to first link model (P1): \(\mathbf{P}_1' = \mathbf{M} \cdot \mathbf{P}_1 \).
- Draw \(\mathbf{P}_1' \).
- \(\mathbf{M} = \mathbf{M} \cdot (T_x(L1) \mathbf{R}_y(\theta_2)) \).
- \(\mathbf{P}_2' = \mathbf{M} \cdot \mathbf{P}_2 \) // Apply matrix to second link.
- Draw \(\mathbf{P}_2' \).

Homework 7 (cont.)

- \(\mathbf{M} = \mathbf{M} \cdot (T_x(L2) \mathbf{R}_y(\theta_3)) \).
- \(\mathbf{P}_3' = \mathbf{M} \cdot \mathbf{P}_3 \) // Apply matrix to third link.
- Draw \(\mathbf{P}_3' \).
- \(\mathbf{M} = \mathbf{M} \cdot (T_x(L3)) \).
- Extract translation vector from \(\mathbf{M} \) as the position for drawing sphere at end of arm.