Reminder!

- Project pre-proposals due tonight
- I will send you mail by the end of the week on who your peer review partner is
- You need to send them a draft of your proposal by next Tuesday (cc me)
Overview

- Uninformed search
 - BFS, DFS, Uniform-Cost, Graph-Search
- Informed search
 - Heuristics, A^*, admissibility, consistency, memory-bounded A^*
- Discussions
Why search?

• Agents with several immediate options of unknown value can choose actions by:
 • examining different sequences of actions
 • choosing the best sequence
 • Examples?
Tree Search

• Explore state space by generating successors of explored states

• Need
 • Initial State
 • Successor function
 • Goal test
 • Path cost

How to get from Arad to Bucharest?
Tree Search

• Initial State: In(Arad)

• Successor function
 • \(<\text{action, successor}>\)
 • (Go(Sibiu), In(Sibiu))
 • Go(Timisoara), In(Timisoara)
 • Go(Zerind), In(Zerind)

• Goal test: In(Bucharest)

• Path cost: sum of step costs (in km)

How to get from Arad to Bucharest?
Class Exercise

• You have three jugs: 12 gal, 8 gal, and 3 gal and a water faucet.
• You can fill the jugs up or pour them out from one into another or onto the ground
• You need to measure out exactly one gal
• In groups, determine the following precisely enough to implement:
 • Initial state
 • Goal test
 • Successor function
 • Cost function
States vs. Nodes

- State is a property of the environment (location, configuration, etc)
- Node is data structure including (state, parent node, action, path cost, depth)
- A state can have multiple nodes
Applications
The Mother of All Search Algorithms

• current_state <= start_state

• loop:

 • is current_state = goal_state? if yes, output path and terminate

 • generate all next states of current_state and add to fringe set

• current_state <= choose from fringe set
Complications

• How to choose next state from fringe set?

• Answer has *significant* implications on:

 • **Time complexity**
 • Number of loops

 • **Space complexity**
 • Size of fringe set

 • **Completeness**
 • Does loop terminate?

 • **Optimality**
 • Quality of solution path
Measuring complexity

- b: maximum branching factor (largest number of next states of any state)
- d: steps to goal
- m: maximum possible path length
- not always finite
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: FIFO queue is data structure for fringe set
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: FIFO queue is data structure for fringe set
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: FIFO queue is data structure for fringe set
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: FIFO queue is data structure for fringe set
Properties of BFS

- Complete?
- Optimal?
- Space?
 - Size of fringe set? $O(b^{d+1})$
- Time?
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set

Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set

Diagram:
- Nodes labeled A, B, C, D, E, F, G, H, I, J, K, L, M, N, O
- Node A as root
- Node C as the deepest unexpanded node
- Implementation with LIFO (stack) for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Properties of DFS

- Space?
 - $bm+1$
- Time?
- Complete?
 - No. Why?
Properties of DFS

• Complete?
 • Spaces with loops
 • Modify to avoid repeated states along path
 • Infinite-depth spaces
 • What if we cut off after depth limit L
 • Depth-Limited DFS
Guaranteeing Completeness

• Idea: Invoke Depth-Limited DFS with iteratively increasing values of L

• This is called *Iterative Deepening Search*
Iterative Deepening

$L=0$
Iterative Deepening

$L = 1$
Iterative Deepening

L=2
Iterative Deepening

$L=3$

Etc.
Iterative Deepening Search--how efficient?

• Re-expanding all those nodes seems bad

• # of nodes in depth-limited search $L=d$

 $N = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d$

• # of nodes in iterated deepening search to $L=d$

 $N = (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + b^d$

For $b=10$, $d=5$

• $N = 1+10+100+1,000+10,000+100,000=111,111$

• $N = 6+50+400+3,000+20,000+100,000=123,456$

• Overhead = $(123,456-111,111)/111,111=12,345/111,111=11.11\%$
Bi-directional Search

- Search gets less efficient with depth
- Minimize depth by doing two searches
 - Forward from the Start State
 - Backward from the Goal
- Catch: sometimes it’s hard to go backward from the goal
What if not all paths are equal?
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breadth-first search if all steps equal
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breadth-first search if all steps equal
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breadth-first search if all steps equal
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breadth first search if all steps equal
Notation: \(g(n) \)

- \(g(n) \) : cost of path from start to node \(n \)
- Fringe is priority queue ordered by \(g(n) \)
Uniform-cost Search

- Complete? If step cost $\geq Epsilon$
- Time and Space?
 - Cost of Optimal Soln = C^*
 - Cost = $O(b^{1 + \text{floor}(C*/E)})$
Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem)(STATE[node]) then return SOLUTION(node)
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

• Remove repeated states
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^/c^]})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^/c^]})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: should be floor not ceiling in Uniform-Cost search
What about complexity?
Heuristics

• NP-Complete problems: impossible to guarantee optimality and sub-exponential run-time

• A heuristic algorithm gives up one or both

• Gives good average run-time or “good” (but not guaranteed optimal) solutions
Heuristic in Search

- **Heuristic**: a “rule of thumb”
- Formally: function that maps a state onto an estimate of the cost to the goal from that state
- Define $h(n) =$ estimated cost of path from node n to goal
 - if n is goal then $h(n)=0$.

![Diagram](image)

- $g(n') = 5$
- $h(a) = 10$
- $h(b) = 18$
- $h(c) = 7$
- $h(G) = 0$
Using Heuristics in Informed Search

- Assume $h(n)$ is given. How can we use it to do search?
- Data structure for the fringe set?

![Diagram showing the use of heuristics in informed search]

- $h(a) = 10$
- $h(b) = 18$
- $h(c) = 7$
- $h(n')$
- $h(G) = 0$
Greedy Best-First Search

- Priority queue using $h(n)$
- Pick the node closest to the goal
- Example fringe (b, 18) (a, 10) (c, 7)
When Greedy Search Goes Bad

- Expand successors of n’
 - Fringe set [(b, h(b)=3), (a, h(a)=1)]
- Expand successors of a
 - Fringe set [(b, h(b)=3), (G, h(G)=0)]
- Expand G...found goal...solution path: S...n’->a->G
 - cost = g(n’) + 100 + 1
 - Not optimal, g(n’) + 4 exists
How to fix?

- So we have
 - $g(n)$: Cost from start to n
 - uniform-cost search
 - $h(n)$: Estimated cost from n to goal
 - greedy best-first search
- Ideas?
A* Search

- Take into account total path cost
- Fringe set as a priority queue ordered by $f(n) = g(n) + h(n)$
 - $f(b) = ?$
 - $f(a) = ?$
- A* is really important
A* Search Example

- In state n'
 - Two successors, a and b
 - $f(a) = g(a) + h(a) = 10 + 100 + 1 = 111$
 - $f(b) = g(b) + h(b) = 10 + 1 + 3 = 14$
 - Fringe set $= \{(b, 14), (a, 111)\}$
 - Choose to expand b
 - Next fringe $= \{(f, 14), (a, 111)\}$
Is A* Guaranteed Optimal?

• Nope, see \(h(b) \)
 • A* will return S...n’-> a -> G
 • Heuristics can be wrong
“Good” Heuristics: Admissibility

Let $h^*(n)$ be the real cost of cheapest path from n to goal.

Definition: $h(n)$ is admissible iff

- for all n, $h(n)$ is less than or equal to $h^*(n)$

Is $h(n') = 99$ admissible?

Is $h(n') = 4$ admissible?

Is $h(b) = 4$ admissible?

Is $h(b) = 0$ admissible?

Straight line distance on a map?
Theorem: If \(h(n) \) is admissible, \(A^* \) is optimal (if no repeated states)

- Suppose \(G_2 \) is suboptimal and path \((S...n'...G_2)\) is returned by \(A^* \)
- Let \(n \) be the first unexpanded node in the optimal path to \(G_1 \)
- In \(A^* \), the only way \(G_2 \) is expanded before \(n \) is if \(f(n) > f(G_2) \)
 - This is how priority queues work
- Assume \(f(n) > f(G_2) \): This is a contradiction, why?
Proof:

- \(f(n) > f(G_2) \)

- \(f(G_2) = g(G_2) + h(G_2) \)

- \(f(G_2) = g(G_2) \)

- \(f(G_2) > g(G_1) \)

- \(f(G_2) > g(n) + h^*(n) \)

- \(f(G_2) > g(n) + h(n) \)

- \(f(G_2) > f(n) \) (Contradiction)

- Assumption

- def of f

- def of h (\(G_2 \) is a goal state)

- \(G_2 \) is suboptimal

- n is on opt path to \(G_1 \)

- h is admissible
When Admissibility Fails

- Is h admissible?

```
\begin{align*}
  g(n') &= 10 \\
  h(n) &= 7 \\
  h(a) &= 5 \\
  h(b) &= 1 \\
  h(G) &= 0
\end{align*}
```
When Admissibility Fails

- Expand node n:
 - $f(a) = 12 + 5 = 17$
 - $f(b) = 14 + 1 = 15$
 - Fringe set $\{(a,17), (b,15)\}$
- Expand b:
 - $f(G) = 14 + 4 = 18$
 - Fringe set $\{(G,18),(a,17)\}$
- Expand a: **Ignore b since b already visited**
- Expand G: test for goal, done. But suboptimal
Still not optimal using Graph-Search

- Graph-Search avoids repeated states by ignoring previously seen states
- What if the second path to the state is optimal?
 - Graph-Search discards it
 - This is why the proof breaks down if repeated states
- Need yet another requirement...
• What is wrong with h?
• Require that
 • $h(a) \leq h(b) + \text{cost}(a,b)$
 • Make the heuristic obey the triangle inequality
Consistent Heuristics

- A heuristic is consistent if
 - For every node n
 - And every successor n' of n
 - Generated by any action a
 - $cost(n,a,n') + h(n') \geq h(n)$
Consistent heuristics

• If h is consistent, $f(n)$ is non-decreasing along any path

• $f(n') = g(n') + h(n')$
 • $= g(n) + c(n,a,n') + h(n')$
 • $\geq g(n) + h(n)$

• $f(n') \geq f(n)$
Consistent Implies Admissible

• Thm: $h(n) \leq h^*(n)$ for all n

• Proof by induction:
 • Base case: $h^*(n) = 0$; n is a goal state so $h(n) = 0$ by definition
 • Inductive hypothesis: For all n' after n on shortest path to Goal
 • Assume $h(n') \leq h^*(n')$
 • Lemma: $h(n) \leq h^*(n)$
 • $h(n) \leq c(n,n') + h(n')$ by consistency
 • $\leq c(n,n') + h^*(n')$ by inductive hypothesis
 • $h(n) \leq h^*(n)$ by definition
Properties of A*:

- Complete: yes (unless infinite nodes where \(f \leq f(G) \))
- Time: exponential
- Space: All nodes in memory
- Optimal: Yes (if using consistent heuristic and Graph-Search)
Time: find a good admissible heuristic

- What kind of heuristics?
Time: find a good admissible heuristic

- \(h_1(n) = \# \text{ of misplaced tiles} \)
- \(h_2(n) = \text{manhattan distance to goal (total number of squares from goal state)} \)

\[
\begin{array}{cccc}
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{array}
\]

- \(h_1(S) = 8 \)
- \(h_2(S) = 3+1+2+2+2+3+3+2 = 18 \)
Dominance

- if $h_2(n) \geq h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h_2 is better for search
- Average search costs

<table>
<thead>
<tr>
<th></th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-puzzle</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>12-puzzle</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>24-puzzle</td>
<td>too big</td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>
Complexity

• So time might be manageable with good heuristics, but space?

• Memory-bounded A*
Simplified Memory-Bounded A*

- Use all available memory
 - Expand best leaves until you can’t
 - Remove worst leaf (highest f-value)
 - Solve ties by expanding newest best leaf and removing oldest worst leaf
 - Complete if soln reachable, optimal if optimal soln reachable
Iterative Deepening A* (IDA*)

- Use iterative deepening to progressively expand the memory usage based on f-cost
- Runs into the same problems as Uniform-Cost if paths/heuristics are real-valued
Recursive Best First Search (RBFS)

- Keep track of the best alternative path (f-limit)
- When current f-values exceed f-limit
 - Backtrack and
 - Store best f-value of children at backtracked nodes
Readings this week: