Lecture 2: Fun with Search

Rachel Greenstadt
CS 510, September 29, 2010
Reminder!

• No in-person class or office hours next week (link to online section)

• Project pre-proposals due tonight

• I will send you mail by the end of the week on who your peer review partner is

• You need to send them a draft of your proposal by next Wednesday (cc me)
Overview

• Uninformed search
 • BFS, DFS, Uniform-Cost, Graph-Search

• Informed search
 • Heuristics, A^*, admissibility, consistency, memory-bounded A^*

• Discussions
Why search?

• Agents with several immediate options of unknown value can choose actions by:
 • examining different *sequences* of actions
 • choosing the best sequence
• Examples?
Tree Search

• Explore state space by generating successors of explored states

• Need
 • Initial State
 • Successor function
 • Goal test
 • Path cost

How to get from Arad to Bucharest?
Tree Search

- Initial State: In(Arad)
- Successor function
 - <action, successor>
 - (Go(Sibiu), In(Sibiu))
 - Go(Timisoara), In(Timisoara)
 - Go(Zerind), In(Zerind)
- Goal test: In(Bucharest)
- Path cost: sum of step costs (in km)

How to get from Arad to Bucharest?
Class Exercise

- You have three jugs: 12 gal, 8 gal, and 3 gal and a water faucet.
- You can fill the jugs up or pour them out from one into another or onto the ground.
- You need to measure out exactly one gal.
- In groups, determine the following precisely enough to implement:
 - Initial state
 - Goal test
 - Successor function
 - Cost function
Applications
The Mother of All Search Algorithms

- current_state <= start_state

- loop:
 - is current_state = goal_state? if yes, output path and terminate
 - generate all next states of current_state and add to fringe set
 - current_state <= choose from fringe set
Complications

• How to choose next state from fringe set?

• Answer has *significant* implications on:
 • Time complexity
 • Number of loops
 • Space complexity
 • Size of fringe set
 • Completeness
 • Does loop terminate?
 • Optimality
 • Quality of solution path
Measuring complexity

- **b**: maximum branching factor (largest number of next states of any state)
- **d**: steps to goal
- **m**: maximum possible path length
 - not always finite
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: FIFO queue is data structure for fringe set
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: FIFO queue is data structure for fringe set

```
A   B   C
 |   /   |
|  /     |
D  E  F  G
```
Breadth-first search

• Expand shallowest unexpanded node

• Implementation: FIFO queue is data structure for fringe set
Breadth-first search

• Expand shallowest unexpanded node

• Implementation: FIFO queue is data structure for fringe set
Properties of BFS

- Complete?
- Optimal?
- Space?
- Size of fringe set? $O(b^{d+1})$
- Time?
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

• Expand deepest unexpanded node

• Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Depth-first search

- Expand deepest unexpanded node
- Implementation: LIFO (stack) is data structure for fringe set
Properties of DFS

- Space?
 - $bm + 1$
- Time?
- Complete?
 - No. Why?
Properties of DFS

- Complete?
- Spaces with loops
 - Modify to avoid repeated states along path
- Infinite-depth spaces
 - What if we cut off after depth limit L
 - Depth-Limited DFS
Guaranteeing Completeness

- Idea: Invoke Depth-Limited DFS with iteratively increasing values of L
- This is called *Iterative Deepening Search*
Iterative Deepening
L=0
Iterative Deepening

$L = 1$
Iterative Deepening
$L=2$
Iterative Deepening

$L=3$

Etc.
Iterative Deepening Search--how efficient?

- Re-expanding all those nodes seems bad
- \# of nodes in depth-limited search \(L=d \)
 \[N = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]
- \# of nodes in iterated deepening search to \(L=d \)
 \[N = (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + b^d \]
- For \(b=10, \ d=5 \)
 \[N = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111 \]
 \[N = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456 \]
 Overhead = \(\frac{123,456 - 111,111}{111,111} = \frac{12,345}{111,111} = 11.11\% \)
Bi-directional Search

• Search gets less efficient with depth
• Minimize depth by doing two searches
 • Forward from the Start State
 • Backward from the Goal
• Catch: sometimes it’s hard to go backward from the goal
What if not all paths are equal?
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breath first search if all steps equal
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breath first search if all steps equal
Uniform-cost search

• Expand least-cost unexpanded node

• Implementation: fringe is priority queue ordered by path cost

• Same as breath first search if all steps equal
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is priority queue ordered by path cost
- Same as breadth first search if all steps equal
Notation: \(g(n) \)

- \(g(n) \): cost of path from start to node \(n \)
- Fringe is priority queue ordered by \(g(n) \)
Uniform-cost Search

- Complete? If step cost \geq Epsilon
- Time and Space?
 - Cost of Optimal Soln = C^*
 - Cost = $O(b^{l+\text{floor}(C^*/E)})$
Graph Search

```
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
    closed ← an empty set
    fringe ← INSERT(Make-Node(Initial-State[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← REMOVE-FRONT(fringe)
        if GOAL-TEST(problem)(State[node]) then return SOLUTION(node)
        if State[node] is not in closed then
            add State[node] to closed
            fringe ← INSERT-ALL(Expand(node, problem), fringe)
```

• Remove repeated states
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C*/\epsilon})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C*/\epsilon})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: should be floor not ceiling in Uniform-Cost search
What about complexity?
Heuristics

• NP-Complete problems: impossible to guarantee optimality and sub-exponential run-time

• A heuristic algorithm gives up one or both

• Gives good average run-time or “good” (but not guaranteed optimal) solutions
Heuristic in Search

- **Heuristic**: a “rule of thumb”
- Formally: function that maps a state onto an estimate of the cost to the goal from that state
- Define $h(n) =$ estimated cost of path from node n to goal
 - if n is goal then $h(n)=0$.
- Figure:
 - $h(a)=10$
 - $h(b)=18$
 - $h(c)=7$
 - $h(G)=0$
Using Heuristics in Informed Search

• Assume $h(n)$ is given. How can we use it to do search?

• Data structure for the fringe set?

![Diagram](image)

- $h(a) = 10$
- $h(b) = 18$
- $h(c) = 7$
- $h(G) = 0$
- $g(n')$
Greedy Best-First Search

- Priority queue using $h(n)$
- Pick the node closest to the goal
- Example fringe (b,18) (a,10) (c,7)

```
S

n'

a  b  c

G

h(b)=18
h(a)=10
h(c)=7
h(G)=0
```
When Greedy Search Goes Bad

- Expand successors of n'
 - Fringe set $[(b, h(b)=3), (a, h(a)=1)]$

- Expand successors of a
 - Fringe set $[(b, h(b)=3), (G, h(G)=0)]$

- Expand G...found goal...solution path: $S\ldots n'\rightarrow a \rightarrow G$
 - cost = $g(n') + 100 + 1$
 - Not optimal, $g(n') + 4$ exists
How to fix?

- So we have
 - $g(n)$: Cost from start to n
 - uniform-cost search
 - $h(n)$: Estimated cost from n to goal
 - greedy best-first search
- Ideas?
A* Search

- Take into account total path cost
- Fringe set as a priority queue ordered by $f(n) = g(n) + h(n)$
 - $f(b) = ?$
 - $f(a) = ?$
- A* is really important
A* Search Example

- In state n'
 - Two successors, a and b
 - $f(a) = g(a) + h(a) = 10 + 100 + 1 = 111$
 - $f(b) = g(b) + h(b) = 10 + 1 + 3 = 14$
 - Fringe set = {(b, 14), (a, 111)}
 - Choose to expand b
 - Next fringe = {(f, 14), (a, 111)}
Is A* Guaranteed Optimal?

- Nope, see $h(b)$
 - A^* will return $S \ldots n' \rightarrow a \rightarrow G$
 - Heuristics can be wrong
“Good” Heuristics: Admissibility

Let \(h^*(n) \) be the real cost of cheapest path from \(n \) to goal.

Definition: \(h(n) \) is admissible iff

- for all \(n \), \(h(n) \) is less than or equal to \(h^*(n) \)
 - Is \(h(n') = 99 \) admissible?
 - Is \(h(n') = 4 \) admissible?
 - Is \(h(b) = 4 \) admissible?
 - Is \(h(b) = 0 \) admissible?
 - Straight line distance on a map?
Theorem: If \(h(n) \) is admissible, \(A^* \) is optimal (if no repeated states)

Suppose \(G_2 \) is suboptimal and path \((S \ldots n' \ldots G_2) \) is returned by \(A^* \)

- Let \(n \) be the first unexpanded node in the optimal path to \(G_1 \)
- In \(A^* \), the only way \(G_2 \) is expanded before \(n \) is if \(f(n) > f(G_2) \)
 - This is how priority queues work
- Assume \(f(n) > f(G_2) \) : This is a contradiction, why?
Proof:

• $f(n) > f(G_2)$

• $f(G_2) = g(G_2) + h(G_2)$

• $f(G_2) = g(G_2)$

• $f(G_2) > g(G_1)$

• $f(G_2) > g(n) + h^*(n)$

• $f(G_2) > g(n) + h(n)$

• $f(G_2) > f(n)$ (Contradiction)

• Assumption

• def of f

• def of h (G_2 is a goal state)

• G_2 is suboptimal

• n is on opt path to G_1

• h is admissible
When Admissibility Fails

- Is h admissible?

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>n</td>
</tr>
<tr>
<td>h(n) = 7</td>
<td>h(n) = 10</td>
</tr>
<tr>
<td>g(n') = 10</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
```
When Admissibility Fails

- Expand node n:
 - \(f(a) = 12 + 5 = 17 \)
 - \(f(b) = 14 + 1 = 15 \)
 - Fringe set \(\{(a, 17), (b, 15)\} \)
- Expand b:
 - \(f(G) = 14 + 4 = 18 \)
 - Fringe set \(\{(G, 18), (a, 17)\} \)
- Expand a: **Ignore b since b already visited**
- Expand G: test for goal, done. But suboptimal
Still not optimal using Graph-Search

• Graph-Search avoids repeated states by ignoring previously seen states

• What if the second path to the state is optimal?
 • Graph-Search discards it
 • This is why the proof breaks down if repeated states

• Need yet another requirement...
Consistency

What is wrong with h?

- g(n') = 10
- h(n) = 7
- h(a) = 5
- h(b) = 1
- h(G) = 0
Consistency

- Require that
 - \(h(a) \leq h(b) + \text{cost}(a,b) \)
- Make the heuristic obey the triangle inequality
Consistent Heuristics

• A heuristic is consistent if
 • For every node n
 • And every successor n' of n
 • Generated by any action a
 • $\text{cost}(n, a, n') + h(n') \geq h(n)$
Consistent heuristics

- If \(h \) is consistent, \(f(n) \) is non-decreasing along any path

- \(f(n') = g(n') + h(n') \)

 - \(= g(n) + c(n,a,n') + h(n') \)

 - \(\geq g(n) + h(n) \)

- \(f(n') \geq f(n) \)
Consistent Implies Admissible

• Thm: $h(n) \leq h^*(n)$ for all n

• Proof by induction:
 • Base case: $h^*(n) = 0$; n is a goal state so $h(n) = 0$ by definition
 • Inductive hypothesis: For all n' after n on shortest path to Goal
 • Assume $h(n') \leq h^*(n')$
 • Lemma: $h(n) \leq h^*(n)$
 • $h(n) \leq c(n,n') + h(n')$ by consistency
 • $\leq c(n,n') + h^*(n')$ by inductive hypothesis
 • $h(n) \leq h^*(n)$ by definition
Properties of A*

- Complete: yes (unless infinite nodes where $f \leq f(G)$)
- Time: exponential
- Space: All nodes in memory
- Optimal: Yes (if using consistent heuristic and Graph-Search)
Time: find a good admissible heuristic

- What kind of heuristics?
Time: find a good admissible heuristic

- $h_1(n) = \# \text{ of misplaced tiles}$
- $h_2(n) = \text{manhattan distance to goal (total number of squares from goal state)}$

$\begin{array}{c|c|c}
7 & 2 & 4 \\
5 & 6 & \hline
8 & 3 & 1 \\
\end{array}$

$\begin{array}{c|c|c}
3 & 4 & 5 \\
6 & 7 & 8 \\
\hline
1 & 2 & \hline
\end{array}$

- $h_1(S) = 8$
- $h_2(S) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$
Dominance

- if $h_2(n) \geq h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h_2 is better for search
- Average search costs

<table>
<thead>
<tr>
<th></th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-puzzle</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>12-puzzle</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>24-puzzle</td>
<td>too big</td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>
Complexity

- So time might be manageable with good heuristics, but space?
- Memory-bounded A*
Simplified Memory-Bounded A*

- Use all available memory
- Expand best leaves until you can’t
- Remove worst leaf (highest f-value)
- Solve ties by expanding newest best leaf and removing oldest worst leaf
- Complete if soln reachable, optimal if optimal soln reachable
Iterative Deepening A* (IDA*)

• Use iterative deepening to progressively expand the memory usage based on f-cost

• Runs into the same problems as Uniform-Cost if paths/heuristics are real-valued
Recursive Best First Search (RBFS)

- Keep track of the best alternative path (f-limit)
- When current f-values exceed f-limit
 - Backtrack and
 - Store best f-value of children at backtracked nodes
Readings this week: