Midterm

- Graded, should be available on bbvista
- I have provided comments on your answers
- Solutions posted on website
- Statistics
 - Mean 76.3, Median 76.5, Stdev 13.27
Schedule changes

• Arms race papers due May 24
• Project 2 out: due Monday, May 31
• Final arms race synthesis due June 4
• Final lectures
 • Privacy and anonymity
 • Usability and behavioral economics of security
Network Review

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer</td>
</tr>
<tr>
<td>Presentation Layer</td>
</tr>
<tr>
<td>Session Layer</td>
</tr>
<tr>
<td>Transport Layer</td>
</tr>
<tr>
<td>Network Layer</td>
</tr>
<tr>
<td>Logical Link Layer</td>
</tr>
<tr>
<td>Physical Layer</td>
</tr>
</tbody>
</table>

Applications

- System Independent data
 - Basically Ignored
 - Reliable Streams
 - Routing
 - Packets
 - Unstructured bits

OSI Reference Model
Network Review

OSI Reference Model
Network Desired Properties (Assets)

• Availability
• Integrity (Consistency)
• Authentication
• Confidentiality
Types of Attack (Adversaries)

- Passive attack
 - Eavesdrop but do not modify
- Active attack
 - Transmit, replay, modify, delete messages from network, covert channels
- Local vs remote attacks
Basic Problems
(Threats)

• Network protocols have no integrity or confidentiality

• Why?
 • “It was a more innocent time”

• Export controls

 Mary had a little key
 (It’s all she could export)
 And all the email that she sent
 Was opened at the fort.
 -- Ron Rivest
 (via Kaufman, Perlman, and Speciner)
Basic Problems
(Threats)

- Network protocols have no integrity or confidentiality
- Vulnerabilities in network services enable remote exploits
- End-to-end argument
 - If you want security (or anything else) then get it
 - But what if the ends are incompetent? Or what if only “one end” supports it?
What network layer should you secure?

- Layer 4 (transport/TCP) and below in OS
- Above that is user level process
- Easier to deploy if you don’t need to change the OS (SSL/TLS and SSH)
- But if you secure layer 3, security happens automagically without application mods (IPSec)
- Plus, SSL can’t tell TCP that it’s integrity check failed, so SSL will discard bad data, then TCP will discard resent good data as duplicates.
On the other hand...

• IPSec can’t tell layers above it anything else that which IP something was sent from (not which user, even if it knows)

• Same as IPSec between two firewalls
 • Encrypt Traffic - eavesdropper protection
 • Policies can allow/deny IP addresses/ports
 • Address-based authentication
 • No other authentication
Physical Layer Attacks

- Wire taps (or wire cutting)
- Electronic emanation
breaking secrecy of the ballot with a radio scanner

10 October 2006
Link Layer (LANs)

- ARP is protocol for finding the link layer (MAC) address from IP address on local network
 - **ARP Request.** Computer A asks the network, "Who has this IP address?"
 - **ARP Reply.** Computer B tells Computer A, "I have that IP. My MAC address is [whatever it is]."
 - **Reverse ARP Request (RARP).** Same concept as ARP Request, but Computer A asks, "Who has this MAC address?"
 - **RARP Reply.** Computer B tells Computer A, "I have that MAC. My IP address is [whatever it is]."
- Replies can be sent without requests, results are cached...
- Any problems with this?
Abusing ARP

• Can send ARP messages claiming to be another computer on the LAN, bad result cached
 • Traffic gets sent to attacker instead
 • Snooping, modifying, or DOS (associate a nonexistent MAC address with them)
Abusing TCP/IP

- Three way handshake produces many opportunities for denial of service
SYN Flood

- Send many SYN packets, never acknowledge the replies
- Too many open connections overload machine
- SYNcookie defense: choose Y to be $E(X)$, no need to keep state about open connection
- Can reconstruct queue if needed
Stateless cookie protocol

Initiator

I want to talk

$c = \text{hash (IP addr, secret)}$

c, start rest of protocol

Bob

verify c

before continuing
Smurf Attacks

- Broadcast IP addresses allow you to send messages to a whole subnet at once
- Send ICMP echo requests (ping) to broadcast address but spoof the return address as victim
- The subnet will now flood the victim with pings
- Fix - don’t answer pings to a broadcast address and shun those who do
Distributed DOS (DDOS)

- Gather a botnet of machines
- Have them all send traffic to target
- More traffic, harder to track down or block
Further Spoofing

- Email spoofing (change from, reply, reply-to)
- DNS spoofing
 - return the wrong address for a page by guessing TXN ID and poison cache (summer 2008)
- Session hijacking - Mallory wants to pretend to be Alice to Bob, DOS Alice, guess TCP sequence number (so sequence numbers should be random)
DNS Vulnerabilities

• maps names to ip addresses

• www.drexel.edu → 144.118.31.11

• distributed: root server delegates to .edu server
debutates to drexel.edu server

• don’t want badhacker.drexel.edu answering for
 www.drexel.edu

• supposed to be solved by transaction ID (# btmn 0
 and 65535 that real server knows, others don’t)
DNS Attack

- Once an answer is received it is cached for TTL (usually one day)
- 1 day * 65,536 lookups / 2 = 84.5 years for 50% chance (not exactly)
- Four observations by Dan Kaminsky
 - Bad guy doesn’t have to look anything up, so replies first (if right TXID)
 - Bad guy can try numbers until good guy returns (maybe 100?)
 - TTL only stops lookups for www.foo.com, not random other names like name1.foo.com, name2.foo.com, etc
 - name83.foo.com can win www.foo.com by delegating his answer to www.foo.com at some wrong address (6.6.6.6)
The Stopgap fix

• Many ways to force a lookup, do this attack

• So, add another 16 bits of randomness, via source port

• Before: 65536 to 1 odds

• After: Between 163,840,000 to 1 and 2,147,483,648 to 1 odds

• This is an improvement
 • That’s a lot of traffic to go unnoticed
 • Not necessarily too much
 • Long term solution?
I want to know the shortest path. So, the routers must exchange local information!
Routing Attacks

• Routers assume computers are honest and rely on them to tell them about paths through the Internet

• So the attacker lies

• Easy to black hole traffic (advertise a short route to nowhere)

• Pakistan did this to youtube
BGP Eavesdropping

• Border Gateway Protocol used to advertise paths between ASes on Internet

• Intercept traffic to target addresses

• Routers listen to the most specific advertisement (smallest set of IP addresses) so attacker advertise a narrower chunk to the wrong place

• AS-path prepending to cause select routers to reject advertisement and forward traffic to real destination (so no one notices)
Encrypting Network Traffic

- Before 90s, most attacks were network attacks
- Watch the traffic, grab a password
- SSH made a big difference
Secure Network Configurations

- Best way to secure a network, secure machines in the network
- Keep them patched, don’t run insecure services, teach users about security
- This is expensive and difficult
Firewalls

• Most commercially successful network security product
Types of Firewalls

- Ingress filtering
 - Block addresses and port numbers coming in
 - Block connections based on TCP headers
- Application proxies - serve as intermediaries for mail, web, etc...strip out bad stuff (spam, active web content)
- Egress filtering - block packets leaving network (classified information, attacks from within)
- DMZ - space between multiple firewalls
Firewall weaknesses

Firewalls are obsolete now that we have users behind them

- Hard to block bad things without blocking good things
- Oppresses sophisticated users
- Firewalls have holes
- One internal machine can spread attack
VPNs

- Encrypt and integrity-protect traffic between firewalls
- Privacy and security while traversing Internet
Intrusion Detection

• Signature detection
 • Prevent known attack vectors
 • Won’t catch new attacks

• Anomaly detection
 • Block weird traffic - false positive problem
 • Receiving operator characteristic (ROC curve)
ROC curves

- Plot detection probability vs false alarm probability
- Dominant curves (above and to the left)

Figure 1: Example of a ROC curve. The red line represents the trade-off between TPR and FPR. The intersection between the red and the green line is where we find the Equal Error Rate.