CS 475: Network Attacks and Defenses

Rachel Greenstadt
Network Review

OSI Reference Model

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer</td>
</tr>
<tr>
<td>Presentation Layer</td>
</tr>
<tr>
<td>Session Layer</td>
</tr>
<tr>
<td>Transport Layer</td>
</tr>
<tr>
<td>Network Layer</td>
</tr>
<tr>
<td>Logical Link Layer</td>
</tr>
<tr>
<td>Physical Layer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Independent data</td>
</tr>
<tr>
<td>Basically Ignored</td>
</tr>
<tr>
<td>Reliable Streams</td>
</tr>
<tr>
<td>Routing</td>
</tr>
<tr>
<td>Packets</td>
</tr>
<tr>
<td>Unstructured bits</td>
</tr>
</tbody>
</table>
Network Review

OSI Reference Model

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Logical Link Layer
Physical Layer

Application

TCP
UDP

ICMP
IP
IGMP

Logical Link Control
Media Access Control
Device Driver

Network Adapter
Network Desired Properties (Assets)

- Availability
- Integrity (Consistency)
- Authentication
- Confidentiality
Types of Attack (Adversaries)

• Passive attack
 • Eavesdrop but do not modify

• Active attack
 • Transmit, replay, modify, delete messages from network, covert channels

• Local vs remote attacks
Basic Problems (Threats)

- Network protocols have no integrity or confidentiality

- Why?
 - “It was a more innocent time”

- Export controls

 Mary had a little key
 (It’s all she could export)
 And all the email that she sent
 Was opened at the fort.
 -- Ron Rivest
 (via Kaufman, Perlman, and Speciner)
Basic Problems (Threats)

- Network protocols have no integrity or confidentiality
- Vulnerabilities in network services enable remote exploits
- End-to-end argument - dumb network
 - If you want security (or anything else) then get it
 - But what if the ends are incompetent? Or what if only “one end” supports it?
What network layer should you secure?

- Layer 4 (transport/TCP) and below in OS
- Above that is user level process
- Easier to deploy if you don’t need to change the OS (SSL/TLS and SSH)
- But if you secure layer 3, security happens automagically without application mods (IPSec)
- Plus, SSL can’t tell TCP that it’s integrity check failed, so SSL will discard bad data, then TCP will discard resent good data as duplicates.
On the other hand...

- IPSec can’t tell layers above it anything else that which IP something was sent from (not which user, even if it knows)
- Same as IPSec between two firewalls
 - Encrypt Traffic - eavesdropper protection
 - Policies can allow/deny IP addresses/ports
 - Address-based authentication
 - No other authentication
Physical Layer Attacks

- Wire taps (or wire cutting)
- Electronic emanation
breaking secrecy of the ballot with a radio scanner

10 October 2006
Link Layer (LANs)

• ARP is protocol for finding the link layer (MAC) address from IP address on local network

 • **ARP Request.** Computer A asks the network, "Who has this IP address?"

 • **ARP Reply.** Computer B tells Computer A, "I have that IP. My MAC address is [whatever it is]."

• **Reverse ARP Request (RARP).** Same concept as ARP Request, but Computer A asks, "Who has this MAC address?"

 • **RARP Reply.** Computer B tells Computer A, "I have that MAC. My IP address is [whatever it is]."

• Replies can be sent without requests, results are cached...

• Any problems with this?
Abusing ARP

- Can send ARP messages claiming to be another computer on the LAN, bad result cached
- Traffic gets sent to attacker instead
- Snooping, modifying, or DOS (associate a nonexistent MAC address with them)
Abusing TCP/IP

- Three way handshake produces many opportunities for denial of service
SYN Flood

- Send many SYN packets, never acknowledge the replies
- Too many open connections overload machine
- SYNcookie defense: choose Y to be $E(X)$, no need to keep state about open connection
- Can reconstruct queue if needed
Stateless cookie protocol

Initiator

I want to talk

c = hash (IP addr, secret)

c, start rest of protocol

Bob

verify c
before continuing
Smurf Attacks

- Broadcast IP addresses allow you to send messages to a whole subnet at once
- Send ICMP echo requests (ping) to broadcast address but spoof the return address as victim
- The subnet will now flood the victim with pings
- Fix - don’t answer pings to a broadcast address and shun those who do
Distributed DOS (DDOS)

- Gather a botnet of machines
- Have them all send traffic to target
- More traffic, harder to track down or block
Further Spoofing

- Email spoofing (change from, reply, reply-to)
- DNS spoofing
 - return the wrong address for a page by guessing TXN ID and poison cache (summer 2008)
- Session hijacking - Mallory wants to pretend to be Alice to Bob, DOS Alice, guess TCP sequence number (so sequence numbers should be random)
DNS Vulnerabilities

• maps names to ip addresses

 www.drexel.edu ➞ 144.118.31.11

• distributed: root server delegates to .edu server delegates to drexel.edu server

• don’t want badhacker.drexel.edu answering for www.drexel.edu

• supposed to be solved by transaction ID (# btwn 0 and 65535 that real server knows, others don’t)
DNS Attack

- Once an answer is received it is cached for TTL (usually one day)
- $1 \text{ day} \times 65,536 \text{ lookups} / 2 = 84.5 \text{ years for 50\% chance (not exactly)}$
- Four observations by Dan Kaminsky
 - Bad guy doesn’t have to look anything up, so replies first (if right TXID)
 - Bad guy can try numbers until good guy returns (maybe 100?)
 - TTL only stops lookups for www.foo.com, not random other names like name1.foo.com, name2.foo.com, etc
 - name83.foo.com can win www.foo.com by delegating his answer to www.foo.com at some wrong address (6.6.6.6)
The Stopgap fix

• Many ways to force a lookup, do this attack
• So, add another 16 bits of randomness, via source port
• Before: 65536 to 1 odds
• After: Between 163,840,000 to 1 and 2,147,483,648 to 1 odds
• This is an improvement
 • That’s a lot of traffic to go unnoticed
 • Not necessarily too much
 • Long term solution?
Routing

I want to know the shortest path

So, the routers must exchange local information!
Routing Attacks

• Routers assume computers are honest and rely on them to tell them about paths through the Internet

• So the attacker lies

• Easy to black hole traffic (advertise a short route to nowhere)

• Pakistan did this to youtube
BGP Eavesdropping

- Border Gateway Protocol used to advertise paths between ASes on Internet
- Intercept traffic to target addresses
- Routers listen to the most specific advertisement (smallest set of IP addresses) so attacker advertise a narrower chunk to the wrong place
- AS-path prepending to cause select routers to reject advertisement and forward traffic to real destination (so no one notices)
Encrypting Network Traffic

- Before 90s, most attacks were network attacks
- Watch the traffic, grab a password
- SSH made a big difference
Secure Network Configurations

• Best way to secure a network, secure machines in the network

• Keep them patched, don’t run insecure services, teach users about security

• This is expensive and difficult
Firewalls

• Most commercially successful network security product
Types of Firewalls

- Ingress filtering
 - Block addresses and port numbers coming in
 - Block connections based on TCP headers
- Application proxies - serve as intermediaries for mail, web, etc...strip out bad stuff (spam, active web content)
- Egress filtering - block packets leaving network (classified information, attacks from within)
- DMZ - space between multiple firewalls
Firewall weaknesses

Firewalls are obsolete now that we have users behind them

- Hard to block bad things without blocking good things
- Oppresses sophisticated users
- Firewalls have holes
- One internal machine can spread attack
VPNs

- Encrypt and integrity-protect traffic between firewalls
- Privacy and security while traversing Internet
Intrusion Detection

• Signature detection
• Prevent known attack vectors
• Won’t catch new attacks

• Anomaly detection
• Block weird traffic - false positive problem
• Receiving operator characteristic (ROC curve)
ROC curves

- Plot detection probability vs false alarm probability
- Dominant curves (above and to the left)

Figure 1: Example of a ROC curve. The red line represents the trade-off between TPR and FPR. The intersection between the red and the green line is where we find the Equal Error Rate.