What is the WHT anyway, and why are there so many ways to compute it?

Jeremy Johnson

1, 2, 6, 24, 112, 568, 3032, 16768,...
Walsh-Hadamard Transform

\(y = \text{WHT}_N x, \quad N = 2^n \)

\[
\text{WHT}_N = \underbrace{\text{WHT}_2 \otimes \cdots \otimes \text{WHT}_2}_n
\]

\[
\text{WHT}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
\]

\[
\text{WHT}_4 = \text{WHT}_2 \otimes \text{WHT}_2
\]

\[
= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}
\]
WHT Algorithms

• Factor WHT_N into a product of sparse structured matrices

• Compute: $y = (M_1 M_2 \ldots M_t)x$
 $y_t = M_t x$
 \ldots
 $y_2 = M_2 y_3$
 $y = M_1 y_2$
Factoring the WHT Matrix

- \(AC \otimes BD = (A \otimes B)(C \otimes D) \)
- \(A \otimes B = (A \otimes I)(I \otimes B) \)
- \(A \otimes (B \otimes C) = (A \otimes B) \otimes C \)
- \(I_m \otimes I_n = I_{mn} \)

\[
WHT_4 = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1
\end{bmatrix} \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}
\]

\[WHT_2 \otimes WHT_2 = (WHT_2 \otimes I_2)(I_2 \otimes WHT_2)\]
Recursive and Iterative Factorization

$$WHT_8 = (WHT_2 \otimes I_4)(I_2 \otimes WHT_4)$$

$$= (WHT_2 \otimes I_4)(I_2 \otimes ((WHT_2 \otimes I_2) (I_2 \otimes WHT_2)))$$

$$= (WHT_2 \otimes I_4)(I_2 \otimes (WHT_2 \otimes I_2)) (I_2 \otimes (I_2 \otimes WHT_2))$$

$$= (WHT_2 \otimes I_4)(I_2 \otimes (WHT_2 \otimes I_2)) ((I_2 \otimes I_2) \otimes WHT_2)$$

$$= (WHT_2 \otimes I_4)(I_2 \otimes WHT_2 \otimes I_2) ((I_2 \otimes I_2) \otimes WHT_2)$$

$$= (WHT_2 \otimes I_4)(I_2 \otimes WHT_2 \otimes I_2) (I_4 \otimes WHT_2)$$
\[
\text{WHT}_8 = \\
(WHT_2 \otimes I_4) (I_2 \otimes WHT_2 \otimes I_2) (I_4 \otimes WHT_2)
\]
WHT Algorithms

• Recursive

\[\text{WHT}_N = (\text{WHT}_2 \otimes I_{N/2})(I_2 \otimes \text{WHT}_{N/2}) \]

• Iterative

\[\text{WHT}_N = \prod_{i=1}^{n} (I_{2^{i-1}} \otimes \text{WHT}_2 \otimes I_{2^{-i}}) \]

• General

\[\text{WHT}_2^n = \prod_{i=1}^{t} (I_{2^{n_1+n_2+\cdots+n_{i-1}}} \otimes \text{WHT}_2^{n_i} \otimes I_{2^{n_{i+1}+\cdots+n_t}}), \]

where \(n = n_1 + \cdots + n_t \)
WHT Implementation

- **Definition/formula**
 - \(N = N_1 \cdot N_2 \cdots N_t \), \(N_i = 2^{n_i} \)
 - \(x = WHT_N \cdot x \), \(x_{b,s} = (x(b), x(b+s), \ldots x(b+(M-1)s)) \)

- **Implementation (nested loop)**

 \[
 R = N; \quad S = 1; \\
 \text{for } i = t, \ldots, 1 \\
 R = R / N_i \\
 \text{for } j = 0, \ldots, R-1 \\
 \quad \text{for } k = 0, \ldots, S-1 \\
 x_{N_i, jN_i S + k, S} = WHT_{N_i} \cdot x_{jN_i S + k, S} \\
 S = S \cdot N_i; \\
 \]

\[
 WHT_{2^n} = \prod_{i=1}^{t} \left(I_{2^{n_1 + \cdots + n_i-1}} \otimes WHT_{2^{n_i}} \otimes I_{2^{n_{i+1} + \cdots + n_t}} \right)
\]
Ordered Partitions

• There is a 1-1 mapping from ordered partitions of \(n \) onto \((n-1) \)-bit binary numbers.

\[\Rightarrow \text{There are } 2^{n-1} \text{ ordered partitions of } n. \]

\[162 = 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0 \]

\[1|1\ 1|1\ 1\ 1 |1\ 1 \rightarrow 1+2+4+2 = 9 \]
Enumerating Partition Trees

- 00
 - 3

- 01
 - 3
 - 2
 - 1

- 01
 - 3
 - 2
 - 1
 - 1
 - 1

- 10
 - 3
 - 1
 - 2

- 10
 - 3
 - 1
 - 2
 - 1
 - 1

- 11
 - 3
 - 1
 - 1
 - 1
 - 1
Counting Partition Trees

\[T_n = \begin{cases}
 1 + \sum_{n_1 + \cdots + n_t = n} T_{n_1} \cdots T_{n_t}, & n > 1 \\
 1, & n = 1
\end{cases} \]

\[T(z) = \sum_{n \geq 0} T_n z^n = z + 2z^2 + 6z^3 + 24z^4 + \cdots \]

\[T(z) = \frac{z}{(1-z)} + \frac{T(z)}{1-T(z)} = \frac{-1 + \sqrt{-1-8z+8z^2}}{2(-2+2z)} \]

\[\Rightarrow T_n = \Theta(\alpha^n / n^{3/2}), \quad \alpha \approx 6.8 \]
WHT Package
Püschel & Johnson (ICASSP ’00)

- Allows easy implementation of any of the possible WHT algorithms
- Partition tree representation
 \[W(n) = \text{small}[n] \mid \text{split}[W(n_1), \ldots, W(n_t)] \]
- Tools
 - Measure runtime of any algorithm
 - Measure hardware events (coupled with PCL)
 - Search for good implementation
 - Dynamic programming
 - Evolutionary algorithm
Histogram \((n = 16, 10,000 \text{ samples})\)

- Wide range in performance despite equal number of arithmetic operations \((n2^n \text{ flops})\)
- Pentium III consumes more run time (more pipeline stages)
- Ultra SPARC II spans a larger range
Operation Count

Theorem. Let W_N be a WHT algorithm of size N. Then the number of floating point operations (flops) used by W_N is $N \lg(N)$.

Proof. By induction.

\[
flops(W_N) = \sum_{i=1}^{t} 2^{n-n_i} \flops(W_{N_i})
\]

\[
= \sum_{i=1}^{t} 2^{n-n_i} n_i 2^{n_i} = 2^n \sum_{i=1}^{t} n_i = n 2^n
\]
Instruction Count Model

\[IC(n) = \alpha A(n) + \sum_{i=1}^{3} \beta_i L_i(n) + \sum_{l=1}^{3} \alpha_l A_l(n) \]

\(A(n) \) = number of calls to WHT procedure
\(\alpha \) = number of instructions outside loops
\(A_l(n) \) = Number of calls to base case of size \(l \)
\(\alpha_l \) = number of instructions in base case of size \(l \)

\(L_i \) = number of iterations of outer (i=1), middle (i=2), and outer (i=3) loop
\(\beta_i \) = number of instructions in outer (i=1), middle (i=2), and outer (i=3) loop body
Small[1]

```assembly
.file "s_1.c"
.version "01.01"

apply_small1:
    movl 8(%esp),%edx // load stride S to EDX
    movl 12(%esp),%eax // load x array's base address to EAX
    fldl (%eax) // st(0)=R7=x[0]
    fldl (%eax,%edx,8) // st(0)=R6=x[S]
    fld %st(1) // st(0)=R5=x[0]
    fadd %st(1),%st // R5=x[0]+x[S]
    fxch %st(2) // st(0)=R5=x[0], s(2)=R7=x[0]+x[S]
    fsubp %st,%st(1) // st(0)=R6=x[S]-x[0]  ????
    fxch %st(1) // st(0)=R6=x[0]+x[S], st(1)=R7=x[S]-x[0]
    fstpl (%eax) // store x[0]=x[0]+x[S]
    fstpl (%eax,%edx,8) // store x[0]=x[0]-x[S]
    ret
```
Recurrences

\[A(n) = 1 + \sum_{i=1}^{t} 2^{n-n_i} A(n_i), \quad n = n_1 + \cdots + n_t \]

\[A(n) = 0, \quad n \text{ a leaf} \]

\[A_l(n) = \nu_l 2^{n-l}, \quad \text{where } \nu_l = \text{number of leaves} = l \]
Recurrences

$L_1(n) = t + \sum_{i=1}^{t} 2^{n-n_i} L_1(n_i), \quad n = n_1 + \ldots + n_t$

$L_2(n) = \sum_{i=1}^{t} 2^{n-n_i} L_2(n_i) + 2^{n_1+\ldots+n_{i-1}}, \quad n = n_1 + \ldots + n_t$

$L_3(n) = \sum_{i=1}^{t} 2^{n-n_i} L_2(n_i) + 2^{n-n_i}, \quad n = n_1 + \ldots + n_t$

$L_i(n) = 0, \quad n \text{ a leaf}$
Histogram using Instruction Model (P3)

\[\alpha_1 = 12, \quad \alpha_1 = 34, \quad \text{and} \quad \alpha_1 = 106 \]
\[\alpha = 27 \]
\[\beta_1 = 18, \quad \beta_2 = 18, \quad \text{and} \quad \beta_1 = 20 \]
Algorithm Comparison

Recursive/Iterative Runtime

Rec &Bal/It Instruction Count

Rec&It/Best Runtime

Small/It Runtime
Dynamic Programming

\[
\min_{n_1 + \ldots + n_t = n} \text{Cost}(\text{Tree with } n \text{ nodes}),
\]

where \(T_n \) is the optimal tree of size \(n \).

This depends on the assumption that \(\text{Cost} \) only depends on the size of a tree and not where it is located. (true for IC, but false for runtime).

For IC, the optimal tree is iterative with appropriate leaves. For runtime, DP is a good heuristic (used with binary trees).