Introduction

• Objective: To obtain fast algorithms for polynomial and integer multiplication based on the FFT. In order to do this we will compute the FFT over a finite field. The existence of FFTs over \mathbb{Z}_p is related to the prime number theorem.

 – Polynomial multiplication using interpolation
 – Feasibility of mod p FFTs
 – Fast polynomial multiplication
 – Fast integer multiplication (3 primes algorithm)

References: Lipson, Cormen et al.
Polynomial Multiplication using Interpolation

• Compute \(C(x) = A(x)B(x) \), where \(\text{degree}(A(x)) = m \), and \(\text{degree}(B(x)) = n \). Degree(\(C(x) \)) = \(m+n \), and \(C(x) \) is uniquely determined by its value at \(m+n+1 \) distinct points.

• [Evaluation] Compute \(A(\alpha_i) \) and \(B(\alpha_i) \) for distinct \(\alpha_i \), \(i=0,\ldots,m+n \).

• [Pointwise Product] Compute \(C(\alpha_i) = A(\alpha_i) \times B(\alpha_i) \) for \(i=0,\ldots,m+n \).

• [Interpolation] Compute the coefficients of \(C(x) = c_n x^{m+n} + \ldots + c_1 x + c_0 \) from the points \(C(\alpha_i) = A(\alpha_i) \times B(\alpha_i) \) for \(i=0,\ldots,m+n \).
Primitive Element Theorem

Theorem. Let F be a finite field with $q = p^k$ elements. Let F^* be the $q-1$ non-zero elements of F. Then $F^* = \langle \alpha \rangle = \{1, \alpha, \alpha^2, \ldots, \alpha^{q-2}\}$ for some $\alpha \in F^*$. α is called a primitive element.

In particular there exist a primitive element for \mathbb{Z}_p for all prime p.

E.G.

$$(\mathbb{Z}5)^* = \{1, 2, 2^2=4, 2^3=3\}$$

$$(\mathbb{Z}17)^* = \{1, 3, 3^2 = 9, 3^3 = 10, 3^4 = 13, 3^5 = 5, 3^6 = 15, 3^7 = 11, 3^8 = 16, 3^9 = 14, 3^{10} = 8, 3^{11} = 7, 3^{12} = 4, 3^{13} = 12, 3^{14} = 2, 3^{15} = 6\}$$
Modular Discrete Fourier Transform

- The n-point DFT is defined over \mathbb{Z}_p if there is a primitive nth root of unity in \mathbb{Z}_p (same is true for any finite field).
- Let ω be a primitive n^{th} root of unity.

$$F_n = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
1 & \omega^1 & \cdots & \omega^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \cdots & \omega^{(n-1)(n-1)}
\end{bmatrix}$$
Example

\[F_4 = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2 \\
\end{bmatrix} \text{ over } \mathbb{Z}_5 \]

\[F_4 = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 13 & 16 & 4 \\
1 & 16 & 1 & 16 \\
1 & 4 & 16 & 13 \\
\end{bmatrix} \text{ over } \mathbb{Z}_{17} \]
Fast Fourier Transform

Assume that $n = 2^m$, then

$$F_{2^m} = (F_2 \otimes I_m)(I_m \oplus W_m)(I_2 \otimes F_m)L_{2^m}$$

$$W_m = \text{diag}(1, \omega^1, \ldots, \omega^{m-1})$$

Let $T(n)$ be the computing time of the FFT and assume that $n=2^k$, then

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n \log n)$$
FFT Factorization over \mathbb{Z}_5

\[
F_4 = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2 \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 4 & 0 \\
0 & 1 & 0 & 4 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 4 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
= (F_2 \otimes I_2)T_2^4(F_2 \otimes I_2)L_2^4
\]
Inverse DFT

\[F_n^{-1} = \frac{1}{n} F_n (\omega^{-1}) \]

\[= \frac{1}{n} \begin{bmatrix}
1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \cdots & \omega^{-(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \cdots & \omega^{-(n-1)(n-1)}
\end{bmatrix} \]
Example

\[F_4^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 1 & 4 \\ 1 & 2 & 4 & 3 \end{bmatrix} \text{ over } \mathbb{Z}_5 \]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2 \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 3 & 4 & 2 \\
1 & 4 & 1 & 4 \\
1 & 2 & 4 & 3 \\
\end{bmatrix} =
\begin{bmatrix}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4 \\
\end{bmatrix}
\]
Feasibility of mod p FFTs

Theorem: \mathbb{Z}_p has a primitive Nth root of unity iff $N|(p-1)$

Proof. By the primitive element theorem there exist an element α of order $(p-1)\mathbb{Z}_p$. If $p-1 = qN$, then α^q is an Nth root of unity.

To compute a mod p FFT of size 2^m, we must find $p = 2^e k + 1$ (k odd), where $e \geq m$.

Theorem. Let a and b be relatively prime integers. The number of primes $\leq x$ in the arithmetic progression $ak + b$ ($k=1,2,...$) is approximately (somewhat greater) $(x/\log x)/\phi(a)$
Fast Polynomial Multiplication

• Compute $C(x) = a(x)b(x)$, where $\text{degree}(a(x)) = m$, and $\text{degree}(b(x)) = n$. Degree($c(x)$) = $m+n$, and $c(x)$ is uniquely determined by its value at $m+n+1$ distinct points. Let $N \geq m+n+1$.

• [Fourier Evaluation] Compute $\text{FFT}(N,a(x),\omega,A); \text{FFT}(N,b(x),\omega,B)$.

• [Pointwise Product] Compute $C_k = \frac{1}{N} A_k \cdot B_k$, $k=0,...,N-1$.

• [Fourier Interpolation] Compute $\text{FFT}(N,C,\omega^{-1},c(x))$.
Fast Modular and Integral Polynomial Multiplication

- If \mathbb{Z}_p has a primitive Nth root of unity then the previous algorithm works fine.

- If \mathbb{Z}_p does not have a primitive Nth root of unity, find a q that does and perform the computation in \mathbb{Z}_{pq}, then reduce the coefficients mod p.

- In $\mathbb{Z}[x]$ use a set of primes p_1, \ldots, p_t that have an Nth root of unity with $p_1 \times \ldots \times p_t \geq$ size of the resulting integral coefficients (this can easily be computed from the input polynomials) and then use the CRT
Fast Integer Multiplication

- Let $A = (a_{n-1}, \ldots, a_1, a_0)_\beta = a_{n-1} \beta^{n-1} + \ldots + a_1 \beta + a_0$
- $B = (b_{n-1}, \ldots, b_1, b_0)_\beta = b_{n-1} \beta^{n-1} + \ldots + b_1 \beta + b_0$

- $C = AB = c(\beta) = a(\beta)b(\beta)$, where $a(x) = a_{n-1}x^{n-1} + \ldots + a_1 x + a_0$, $b(x) = b_{n-1}x^{n-1} + \ldots + b_1 x + b_0$, and $c(x) = a(x)b(x)$.

- Idea: Compute $a(x)b(x)$ using FFT-based polynomial multiplication and then evaluate the result at β. Computation will be performed mod p for several word sized “Fourier” primes and the Chinese Remainder Theorem will be used to recover the integer product.
Three Primes Algorithm

- Compute $C = AB$, where $\text{length}(A) = m$, and $\text{length}(B) = n$. Let $a(x)$ and $b(x)$ be the polynomials whose coefficients are the digits of A and B respectively.
- The algorithm requires K “Fourier primes” $p = 2^e k + 1$ for sufficiently large e.
- [Polynomial multiplication] Compute $c_i(x) = a(x)b(x) \mod p_i$ for $i=1,\ldots,K$ using FFT-based polynomial multiplication.
- [CRT] Compute $c(x) \equiv c_i(x) \pmod{p_i}$ for $i=1,\ldots,K$.
- [Evaluation at radix] $C = c(\beta)$.
Analysis of Three Primes Algorithm

• Determine K
 – Since the kth coefficient of c(x),
 \[c_k = \sum_{i+j=k} a_i b_j, \]
 the coefficients of c(x) are bounded by \(n\beta^2 \)

 – Therefore, we need the product \(p_1 \ldots p_K \geq n\beta^2 \)
 – If we choose \(p_i > \beta \), then this is true if \(\beta^K \geq n\beta^2 \)
 – Assuming \(n < \beta \) [\(\beta \) is typically wordsize - for 32-bit words, \(\beta \approx 10^9 \)], only 3 primes are required

Theorem. Assume that mod p operations can be performed in O(1) time. Then the 3-primes algorithm can multiply two n-digit numbers in time O(nlogn) provided:

– \(n < \beta \)
– \(n \leq 2^{E-1} \), where three Fourier primes \(p = 2^e k + 1 \) (\(p > \beta \)) can be found with \(e \geq E \) (need to perform the FFT of size 2n)
Limitations of 3 Primes Algorithms

- If we choose the primes to be wordsize for 32-bit words

 $\beta < p_i < W = 2^{31}-1$
 $\beta = 10^9$
 $n \leq 2^{E-1} = 2^{23} \approx 8.38 \times 10^6$

<table>
<thead>
<tr>
<th>$p = 2^ek + 1$ (k odd)</th>
<th>e</th>
<th>Least primitive element α</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013265921</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>2113929217</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>2130706433</td>
<td>24</td>
<td>3</td>
</tr>
</tbody>
</table>