Applied Symbolic Computation
(CS 567)

Karatsuba’s Algorithm for Integer Multiplication

Jeremy R. Johnson
Introduction

• Objective: To derive a family of asymptotically fast integer multiplication algorithms using polynomial interpolation

 – Karatsuba’s Algorithm
 – Polynomial algebra
 – Interpolation
 – Vandermonde Matrices
 – Toom-Cook algorithm
 – Polynomial multiplication using interpolation
 – Faster algorithms for integer multiplication

References: Lipson, Cormen et al.
Karatsuba’s Algorithm

- Using the classical pen and paper algorithm two n digit integers can be multiplied in $O(n^2)$ operations. Karatsuba came up with a faster algorithm.

- Let A and B be two integers with
 - $A = A_110^k + A_0$, $A_0 < 10^k$
 - $B = B_110^k + B_0$, $B_0 < 10^k$
 - $C = A*B = (A_110^k + A_0)(B_110^k + B_0)$
 $$= A_1B_110^{2k} + (A_1B_0 + A_0 B_1)10^k + A_0B_0$$

Instead this can be computed with 3 multiplications

- $T_0 = A_0B_0$
- $T_1 = (A_1 + A_0)(B_1 + B_0)$
- $T_2 = A_1B_1$
- $C = T_210^{2k} + (T_1 - T_0 - T_2)10^k + T_0$
Complexity of Karatsuba’s Algorithm

- Let \(T(n) \) be the time to compute the product of two \(n \)-digit numbers using Karatsuba’s algorithm. Assume \(n = 2^k \).
 \[T(n) = \Theta(n^{\lg(3)}), \quad \lg(3) \approx 1.58 \]
- \(T(n) \leq 3T(n/2) + cn \)
 \[\leq 3(3T(n/4) + c(n/2)) + cn = 3^2T(n/2^2) + cn(3/2 + 1) \]
 \[\leq 3^2(3T(n/2^3) + c(n/4)) + cn(3/2 + 1) \]
 \[= 3^3T(n/2^3) + cn(3^2/2^2 + 3/2 + 1) \]
 ...
 \[\leq 3^iT(n/2^i) + cn(3^{i-1}/2^{i-1} + \ldots + 3/2 + 1) \]
 ...
 \[\leq 3^kT(1) + cn(3^{k-1}/2^{k-1} + \ldots + 3/2 + 1) \]
 \[\leq 3^kT(1) + cn[((3/2)^k - 1)/(3/2 -1)] + c3^k \]
 \[= 2c(3^k - 2^k) + c3^k \leq 3c3^{\lg(n)} = 3cn^{\lg(3)} \]
Divide & Conquer Recurrence

Assume $T(n) = aT(n/b) + \Theta(n)$

- $T(n) = \Theta(n)$ \hspace{1cm} [a < b]
- $T(n) = \Theta(n\log(n))$ \hspace{1cm} [a = b]
- $T(n) = \Theta(n^{\log_b(a)})$ \hspace{1cm} [a > b]
Polynomial Algebra

- Let $F[x]$ denote the set of polynomials in the variable x whose coefficients are in the field F.
- $F[x]$ becomes an algebra where $+,$ $*$ are defined by polynomial addition and multiplication.

\[
A(x) = \sum_{i=0}^{m} a_i x^i, \quad B(x) = \sum_{j=0}^{n} b_j x^j
\]

\[
C(x) = A(x)B(x) = \sum_{k=0}^{m+n} c_k x^k,
\]

\[
c_k = \sum_{k=i+j}^{\min(k,m)} a_i b_j = \sum_{i=\max(0,k-n)}^{\min(k,m)} a_i b_{k-i}
\]
Interpolation

- A polynomial of degree \(n \) is uniquely determined by its value at \((n+1)\) distinct points.

Theorem: Let \(A(x) \) and \(B(x) \) be polynomials of degree \(m \). If \(A(\alpha_i) = B(\alpha_i) \) for \(i = 0, \ldots, m \), then \(A(x) = B(x) \).

Proof.
Recall that a polynomial of degree \(m \) has \(m \) roots.
\[
A(x) = Q(x)(x-\alpha) + A(\alpha), \text{ if } A(\alpha) = 0, \ A(x) = Q(x)(x-\alpha), \text{ and } \deg(Q) = m-1
\]
Consider the polynomial \(C(x) = A(x) - B(x) \). Since \(C(\alpha_i) = A(\alpha_i) - B(\alpha_i) = 0 \), for \(m+1 \) points, \(C(x) = 0 \), and \(A(x) \) must equal \(B(x) \).
Lagrange Interpolation Formula

- Find a polynomial of degree m given its value at $(m+1)$ distinct points. Assume $A(\alpha_i) = y_i$

$$A(x) = \sum_{i=0}^{m} \left(\prod_{j \neq i} \frac{(x - \alpha_j)}{(\alpha_i - \alpha_j)} \right) y_i$$

- Observe that

$$A(\alpha_k) = \sum_{i=0}^{m} \left(\prod_{j \neq i} \frac{(\alpha_k - \alpha_j)}{(\alpha_i - \alpha_j)} \right) y_i = y_k$$
Matrix Version of Polynomial Evaluation

- Let $A(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

- Evaluation at the points $\alpha, \beta, \gamma, \delta$ is obtained from the following matrix-vector product:

\[
\begin{bmatrix}
A(\alpha) \\
A(\beta) \\
A(\gamma) \\
A(\delta)
\end{bmatrix} =
\begin{bmatrix}
1 & \alpha^1 & \alpha^2 & \alpha^3 \\
1 & \beta^1 & \beta^2 & \beta^3 \\
1 & \gamma^1 & \gamma^2 & \gamma^3 \\
1 & \delta^1 & \delta^2 & \delta^3
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3
\end{bmatrix}
\]
Matrix Interpretation of Interpolation

Let $A(x) = a_n x^n + ... + a_1 x + a_0$ be a polynomial of degree n. The problem of determining the $(n+1)$ coefficients $a_n, ..., a_1, a_0$ from the $(n+1)$ values $A(\alpha_0), ..., A(\alpha_n)$ is equivalent to solving the linear system

$$
\begin{bmatrix}
A(\alpha_0) \\
A(\alpha_1) \\
\vdots \\
A(\alpha_n)
\end{bmatrix} =
\begin{bmatrix}
1 & \alpha_0^1 & \ldots & \alpha_0^n \\
1 & \alpha_1^1 & \ldots & \alpha_1^n \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_n^1 & \ldots & \alpha_n^n
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_n
\end{bmatrix}
$$
Vandermonde Matrix

\[V(\alpha_0, \ldots, \alpha_n) = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
1 & \alpha_0 & \ldots & \alpha_0 \\
1 & \alpha_1 & \ldots & \alpha_1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_n & \ldots & \alpha_n
\end{bmatrix} \]

\[\det(V) = \prod_{i<j}(\alpha_j - \alpha_i) \]

_\(V(\alpha_0, \ldots, \alpha_n) \) is non-singular when \(\alpha_0, \ldots, \alpha_n \) are distinct._
Polynomial Multiplication using Interpolation

- Compute $C(x) = A(x)B(x)$, where $\text{degree}(A(x)) = m$, and $\text{degree}(B(x)) = n$. Degree($C(x)$) = $m+n$, and $C(x)$ is uniquely determined by its value at $m+n+1$ distinct points.

- [Evaluation] Compute $A(\alpha_i)$ and $B(\alpha_i)$ for distinct α_i, $i=0,...,m+n$.

- [Pointwise Product] Compute $C(\alpha_i) = A(\alpha_i) \cdot B(\alpha_i)$ for $i=0,...,m+n$.

- [Interpolation] Compute the coefficients of $C(x) = c_n x^{m+n} + ... + c_1 x + c_0$ from the points $C(\alpha_i) = A(\alpha_i) \cdot B(\alpha_i)$ for $i=0,...,m+n$.

Interpolation and Karatsuba’s Algorithm

• Let \(A(x) = A_1x + A_0 \), \(B(x) = B_1x + B_0 \), \(C(x) = A(x)B(x) = C_2x^2 + C_1x + C_0 \)

• Then \(A(10^k) = A \), \(B(10^k) = B \), and \(C = C(10^k) = A(10^k)B(10^k) = AB \)

• Use interpolation based algorithm:

 – Evaluate \(A(\alpha), A(\beta), A(\gamma) \) and \(B(\alpha), B(\beta), B(\gamma) \) for \(\alpha = 0, \beta = 1, \) and \(\gamma = \infty \).
 – Compute \(C(\alpha) = A(\alpha)B(\alpha), C(\beta) = A(\beta)B(\beta), C(\gamma) = A(\gamma)B(\gamma) \)
 – Interpolate the coefficients \(C_2, C_1, \) and \(C_0 \)
 – Compute \(C = C_210^{2k} + C_110^k + C_0 \)
Matrix Equation for Karatsuba’s Algorithm

- Modified Vandermonde Matrix

\[
\begin{bmatrix}
C(0) \\
C(1) \\
C(\infty)
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
C_0 \\
C_1 \\
C_2
\end{bmatrix}
\]

- Interpolation

\[
\begin{bmatrix}
C_0 \\
C_1 \\
C_2
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & -1 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
A_0 B_0 \\
(A_0 + A_1)(B_0 + B_1) \\
A_1 B_1
\end{bmatrix}
\]
Integer Multiplication Splitting the Inputs into 3 Parts

• Instead of breaking up the inputs into 2 equal parts as is done for Karatsuba’s algorithm, we can split the inputs into three equal parts.

• This algorithm is based on an interpolation based polynomial product of two quadratic polynomials.

• Let \(A(x) = A_2x^2 + A_1x + A_0 \), \(B(x) = B_2x^2 + B_1x + B \), \(C(x) = A(x)B(x) = C_4x^4 + C_3x^3 + C_2x^2 + C_1x + C_0 \)

• Thus there are 5 products. The divide and conquer part still takes time = \(O(n) \). Therefore the total computing time \(T(n) = 5T(n/3) + O(n) = \Theta(n^{\log_3(5)}) \), \(\log_3(5) \approx 1.46 \)
Asymptotically Fast Integer Multiplication

• We can obtain a sequence of asymptotically faster multiplication algorithms by splitting the inputs into more and more pieces.

• If we split A and B into k equal parts, then the corresponding multiplication algorithm is obtained from an interpolation based polynomial multiplication algorithm of two degree \((k-1)\) polynomials.

• Since the product polynomial is of degree 2\((k-1)\), we need to evaluate at 2\(k-1\) points. Thus there are \((2k-1)\) products. The divide and conquer part still takes time = \(O(n)\). Therefore the total computing time \(T(n) = (2k-1)T(n/k) + O(n) = \Theta(n^{\log_k (2k-1)})\).
Asymptotically Fast Integer Multiplication

- Using the previous construction we can find an algorithm to multiply two \(n \) digit integers in time \(\Theta(n^{1+\varepsilon}) \) for any positive \(\varepsilon \).
 - \(\log_k(2k-1) = \log_k(k(2-1/k)) = 1 + \log_k(2-1/k) \)
 - \(\log_k(2-1/k) \leq \log_k(2) = \ln(2)/\ln(k) \to 0. \)

- Can we do better?

- The answer is yes. There is a faster algorithm, with computing time \(\Theta(n \log(n) \log \log(n)) \), based on the fast Fourier transform (FFT). This algorithm is also based on interpolation and the polynomial version of the CRT.