Recursion and Induction

• Themes
 – Recursion
 – Recursive Definitions
 – Recurrence Relations
 – Induction (prove properties of recursive programs and objects defined recursively)

• Examples
 – Tower of Hanoi
 – Gray Codes
 – Hypercube
Tower of Hanoi

- There are three towers
- 64 gold disks, with decreasing sizes, placed on the first tower
- You need to move the stack of disks from one tower to another, one disk at a time
- Larger disks can not be placed on top of smaller disks
- The third tower can be used to temporarily hold disks
Tower of Hanoi

• Assume one disk can be moved in 1 second
 How long would it take to move 64 disks? N disks?

• To create an algorithm to solve this problem, it is convenient to generalize the problem to the “N-disk” problem, where in our case N = 64.
Recursive Solution
Recursive Solution
Recursive Solution
Recursive Solution
Tower of Hanoi
Recursive Algorithm

```plaintext
define hanoi (n, from, to, using)
  if n = 1 then
    move(from, to)
  else
    hanoi(n-1, from, using, to)
    move(from, to)
    hanoi(n-1, using, to, from)
```
Correctness

• Use induction to prove that the recursive algorithm solves the Tower of Hanoi problem.

• Let $H(n,a,b,c) = \text{property that } \text{hanoi}(n,a,b,c) \text{ moves } n \text{ disks from tower } a \text{ to } b \text{ using tower } c \text{ without placing larger disks on top of smaller disks}$.
Correctness

• **Base case:**
 • $H(1,a,b,c)$ works since $hanoi(1, a, b, c) = move(a,b)$

• **Inductive Hypothesis (IH):**
 • Assume $H(n,a,b,c)$ is correct for arbitrary $a b c$

• **Show IH $\Rightarrow H(n+1,a,b,c)$**
 • The first recursive call correctly moves n disks from tower a to tower c [by IH]
 • $move$ moves the largest disk to the empty tower b (all other disks on tower c)
 • The second recursive call correctly moves n disks from tower c to tower b on top of largest disk
Cost

• The number of moves $M(n)$ required by the algorithm to solve the n-disk problem satisfies the recurrence relation
 – $M(n) = 2M(n-1) + 1$
 – $M(1) = 1$
Cost

• We’d like to find a closed form, a formula that is not a recurrence relation

• We can do this a couple ways:
 – We can guess at the answer (and then prove it, of course)
 – We can unwind the recurrence (still need to prove it)
Guess and Prove

- Calculate $M(n)$ for small n and look for a pattern.
- Guess the result and prove your guess correct using induction.

<table>
<thead>
<tr>
<th>n</th>
<th>$M(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
</tbody>
</table>
Proof by Induction

• **Base case:** \(M(1) = 1 = 2^1 - 1 \)

• **Inductive Hypothesis (IH)**
 - Assume \(M(n) = 2^n - 1 \)

 • **Show IH \(\Rightarrow M(n+1) = 2^{n+1} - 1 \)**
 - \(M(n+1) = 2M(n) + 1 \)
 - \(= 2(2^n - 1) + 1 \) [by IH]
 - \(= 2 \times 2^n - 1 = 2^{n+1} - 1 \)
Substitution Method

- Unwind recurrence, by repeatedly replacing $M(n)$ by the r.h.s. of the recurrence until the base case is encountered.

$$M(n) = 2M(n-1) + 1$$

$$= 2^2 \times [2 \times M(n-2) + 1] + 1 + 2$$

$$= 2^3 \times M(n-3) + 1 + 2 + 2^2$$
Geometric Series

• After k steps: (prove by induction on k)
 \[M(n) = 2^k \cdot M(n-k) + 1 + 2 + 2^2 + \ldots + 2^{k-1} \]

• Base case, M(1), encountered when n-k=1
 \[\Rightarrow k = n-1 \]

• Substituting in, to get rid of all of the k’s:
 \[M(n) = 2^{n-1} \cdot M(1) + 1 + 2 + 2^2 + \ldots + 2^{n-2} \]
 \[= 1 + 2 + \ldots + 2^{n-1} = \sum_{i=0}^{n-1} 2^i = 2^n - 1 \]

• Use induction to reprove result for M(n) using this sum. Generalize by replacing 2 by x.
Induction

• After k steps: (prove by induction on k)
 \[M(n) = 2^k \times M(n-k) + 1 + 2 + 2^2 + \ldots + 2^{k-1} \quad (1 \leq k < n) \]

• Base case:
 • Using recurrence after 1 step \(M(n) = 2M(n-1) + 1 \)

• Induction Hypothesis
 \[M(n) = 2^k \times M(n-k) + 1 + 2 + 2^2 + \ldots + 2^{k-1} \]

• Show IH \(\Rightarrow \)
 \[M(n) = 2^{k+1} \times M(n-(k+1)) + 1 + 2 + 2^2 + \ldots + 2^k \]
Induction

• Show IH ⇒

\[M(n) = 2^{k+1} \times M(n-(k+1)) + 1 + 2 + 2^2 + \ldots + 2^k \]

\[M(n) = 2^k \times M(n-k) + 1 + 2 + 2^2 + \ldots + 2^{k-1} \quad [IH] \]

\[= 2^k \times (2M(n-k-1)+1) + 1 + 2 + 2^2 + \ldots + 2^{k-1} \quad [recurrence] \]

\[= 2^k \times 2M(n-k-1) + 2^k + 1 + 2 + 2^2 + \ldots + 2^{k-1} \]

\[= 2^{k+1} \times M(n-(k+1)) + 1 + 2 + 2^2 + \ldots + 2^k \]
Geometric Series

• Show \(1 + 2 + \ldots + 2^{n-1} = \sum_{i=0}^{n-1} 2^i = 2^n - 1\)

• Base case: \(\sum_{i=0}^{0} 2^i = 1 = 2 - 1\)

• Inductive Hypothesis \(\sum_{i=0}^{n-1} 2^i = 2^n - 1\)

• Show \(\sum_{i=0}^{n} 2^i = 2^n + \sum_{i=0}^{n-1} 2^i = 2^n + (2^n - 1) = 2 \times 2^n - 1 = 2^{n+1} - 1\)

• Generalize by replacing 2 by \(x\). \(\sum_{i=0}^{n} x^i = \frac{x^{n+1} - 1}{x - 1}\)
Worst Case

• Is it possible to solve Hanoi in fewer than $2^n - 1$ moves?

• Let $M^*(n)$ be the fewest moves required to solve $H(n,a,b,c)$

• Claim $M^*(n) \geq 2M^*(n-1) + 1$ [why?]
 • Use induction to show $M^*(n) \geq 2^n - 1$
Iterative Solution to Hanoi

- It is possible to derive an iterative solution to the tower of Hanoi problem, but it is much more complicated than the recursive solution.
- The solution is related to the binary reflected Gray code.
- An iterative method for computing the binary reflected Gray code will be derived and this will lead to an iterative solution of Tower of Hanoi.
Gray Code

• An n-bit Gray code is a 1-1 onto mapping from [0..2^n-1] such that the binary representation of consecutive numbers differ by exactly one bit.

• Invented by Frank Gray for a shaft encoder - a wheel with concentric strips and a conducting brush which can read the number of strips at a given angle. The idea is to encode 2^n different angles, each with a different number of strips, corresponding to the n-bit binary numbers.
Shaft Encoder (Counting Order)

Consecutive angles can have an abrupt change in the number of strips (bits) leading to potential detection errors.
Since a Gray code is used, consecutive angles have only one change in the number of strips (bits).
Binary-Reflected Gray Code

- \(G_1 = [0,1] \)
- \(G_n = [0G_{n-1},1\overline{G}_{n-1}] \), \(\overline{G} \) \(\Rightarrow \) reverse order \(\equiv \) complement leading bit

- \(G_2 = [0G_1,1\overline{G}_1] = [00,01,11,10] \)
- \(G_3 = [0G_2,1\overline{G}_2] = [000,001,011,010,110,111,101,100] \)
- Use induction to prove that this is a Gray code
Iterative Formula

• Let $G_n(i)$ be a function from $[0, \ldots , 2^n-1]$

• $G_n(i) = i \oplus (i \gg 1)$ [exclusive or of i and $i/2$]
 – $G_2(0) = 0$, $G_2(1) = 1$, $G_2(2) = 3$, $G_2(3) = 2$

• Use induction to prove that the sequence $G_n(i)$, $i=0,\ldots,2^n-1$ is a binary-reflected Gray code.
Gray Code & Tower of Hanoi

• Introduce coordinates \((d_0, \ldots, d_{n-1})\), where \(d_i \in \{0, 1\}\)
• Associate \(d_i\) with the \(i\)th disk
• Initialize to \((0, \ldots, 0)\) and flip the \(i\)th coordinate when the \(i\)-th disk is moved
• The sequence of coordinate vectors obtained from the Tower of Hanoi solution is a Gray code (why?)
Tower of Hanoi

(0,0,0)

[000, 001, 011, 010, 110, 111, 101, 100]
Tower of Hanoi

(0,0,1)

[000, 001, 011, 010, 110, 111, 101, 100]
Tower of Hanoi

(0,1,1)

[000,001,011,010,110,111,101,100]
Tower of Hanoi

(0,1,0)

[000,001,011,010,110,111,101,100]
Tower of Hanoi

$(1,1,0)$

$[000,001,011,010,110,111,101,100]$
Tower of Hanoi

(1,1,1)

[000,001,011,010,110,111,101,100]
Tower of Hanoi

(1,0,1)

[000,001,011,010,110,111,101,100]
Tower of Hanoi

(1,0,0)

[000,001,011,010,110,111,101,100]
Hypercube

Graph (recursively defined)

n-dimensional cube has 2^n nodes with each node connected to n vertices

Binary labels of adjacent nodes differ in one bit
Hypercube, Gray Code and Tower of Hanoi

A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)

000 001 101 100 110 111
010 011 100 101 110 111
000 001 101 100 110 111
Hypercube, Gray Code and Tower of Hanoi

A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
Hypercube, Gray Code and Tower of Hanoi

A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
Hypercube, Gray Code and Tower of Hanoi

A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)
A Hamiltonian cycle is a sequence of edges that visit each node exactly once and ends at a node with an edge to the starting node.

A Hamiltonian cycle on a hypercube provides a Gray code (why?)