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Intel's Pentium has almost 0% market share. Zip. Zilch. Yup, Pentium is a statistically insignificant 
chip with tiny sales.  

Surprised? Try this: all life on earth is really just insects. Statistically speaking, that's the deal. 
There are more different species of insects than of all other forms of life put together - by a lot. If 
you round off the fractions, there are no trees, no bacteria, no fish, viruses, mollusks, birds, plants 
or mammals of any kind. If you need help feeling humble, mammals make up just 0.03% of the 
total number of species on the planet.  

Everything you know is wrong. Even about microprocessor chips.  

What's this got to do with extreme processor technology? The comparison between Pentium and 
paramecia is a pretty close one. Ask a friend what's the most popular microprocessor chip in the 
world. Chances are they'll answer "Pentium." The newspapers constantly shout Intel's 92% 
market share, or some such number. Clearly, the Pentium is the overwhelmingly dominant 
species and all other chips are struggling for that last 8%, right?  

Sorry, but thank you for playing. The fact is, Pentium accounts for only about 2% of the 
microprocessors sold around the world. Pentium is to microprocessors what viruses are to life on 
earth. No, that's too generous. Pentium volume ranks a little below viruses but a little above 
mollusks (i.e., snails) on the microprocessor food chain. The insects--the overwhelmingly 
dominant species--are the embedded microprocessors. They're the forgotten phylum that controls 
(approximately) 100% of the microprocessor kingdom.  
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With that potentially enlightening introduction, we welcome you to this first segment of a three 
part series covering the embedded processor space. We'll begin by reviewing usages and 



markets for embedded processors, and then cover the major chip families from the leading 
embedded processor vendors.  

As you can see in the following chart, the volume of 8-bit embedded chips is enormous and 
growing steadily. These little suckers are selling to the tune of more than a quarter of a billion 
chips every month! That's one new 8-bit microprocessor for every man, woman, and child living in 
the United States, every month. Are you consuming your fair share?  
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You probably are without realizing it. We estimate the average middle-class American household 
has about 40 to 50 microprocessors in it - plus another 10 processors for every PC (more on that 
later). There's a microprocessor in your microwave oven and in the washer, dryer, and 
dishwasher. Another processor lurks inside your color TV and yet another one in the remote 
control. Your VCR (and its remote) has a processor embedded inside, as does your stereo 
receiver, CD player, DVD player, and tape deck. An automatic garage door opener (and each 
remote control for it) also contains a microprocessor. The average new car has a dozen 
microprocessors in it. If you have a 7-series BMW, congratulations are in order: you have 63 
microprocessors in your new car. Don't feel too proud, though. The Mercedes S-class has 65.  

What could all these "mobile processors" be doing? Well, every modern car has electronic 
ignition timing to replace the distributor, points, and condenser. Most Ford vehicles, including 
Jaguars and Volvos, use a PowerPC to control the engine. The PowerPC 505 processor was 
designed in the mid-1990s and includes one of the best floating-point units (FPU) available at that 
time. (Automotive designers are notoriously conservative about electronics, which is why the 
processor seems comparatively old.) The FPU helps the PowerPC calculate time-angle ratios, 
which is vital for valve and ignition timing. At the time the PowerPC 505 was introduced, it was 
comparable to the chips Apple was using in the Macintosh, but sells for just a few dollars.  

Outside of the engine, automatic transmissions are microprocessor controlled as well. Newer cars 
even have adaptive shifting algorithms, modifying shift points based on road conditions, weather, 
and the driver's individual habits. Some systems even retain driver preferences and 
idiosyncrasies in nonvolatile memory. Antilock brakes generally also are computer controlled, 
replacing the hydraulic-only systems of earlier years.  



Got a Volvo? The processor in its automatic transmission communicates with the processors 
behind each side-view mirror. Why? So the outside mirrors can automatically tilt down and inward 
whenever you put car into reverse gear, the better to see the back end of the car. It's also 
common for the processor in the car radio (or in-dash CD player) to communicate with the 
processor(s) controlling the antilock brakes. This way, the audio volume can adjust to 
compensate for road noise, and the ABS provides the most accurate information about road 
speed. High-end cars connect the processors controlling the airbags with those in the GPS and 
built-in cell phone. If the car's in a serious accident that pops the airbags, it will phone for 
emergency aid and report the exact location of the accident using the GPS. Eerie.  

Processors in Video Games 
Obviously, video games such as the PlayStation, Dreamcast, GameCube, and N64 all have 
processors, and usually more than one. Each Nintendo 64 is based on a 32-bit MIPS processor, 
as is the original PlayStation. Nintendo switched to PowerPC for GameCube, while Sony stuck 
with MIPS for PlayStation 2, but designed its own custom version (the Emotion Engine) in 
cooperation with MIPS Technologies and Toshiba. The PS2 even includes a chip that clones the 
older PlayStation processor for backward compatibility.  

The late, great Sega Saturn had four (count 'em) different 32-bit microprocessors inside. Three 
were from Hitachi's SuperH line with one Motorola 68000 just to baby sit the CD-ROM drive. 
Ironically, that processing power probably led to Saturn's downfall and Sega's eventual departure 
from the console market. Game programmers found that writing code for four processors was just 
too complicated. With a finite amount of time to get a game to market, programmers tended to cut 
corners and write games that used only one or two of Saturn's processors, making the games 
less appealing than they might have been. Symmetric multiprocessing is nontrivial, even in 
games.  

The Additional Processors in Your PC 
But what's this about ten microprocessors in a PC? Even the most avid over-clocker still has only 
one processor, right? One main processor, yes. But your PC has far more than just the single 
CPU from AMD, Transmeta, or Intel driving it. There's an 8-bit processor (probably a Philips or 
Intel 8048) in your keyboard, another processor in your mouse, a CPU in each hard disk drive 
and floppy drive, one in your CD-ROM, a big one in your graphics accelerator, a CPU buried in 
your USB interface, another processor handling your NIC, and so on. Except for graphics chips, 
most of these little helpers are 8-bit processors sourced by any number of Japanese, American, 
or European companies. Even the first IBM PC/XT included about a half-dozen different 
processor chips in addition to the 8088 CPU.  

If you were the kind of über-nerd who fiddled with the BIOS of your first PC back in the day, you 
might remember playing around with keyboard scan codes. These are the funny two-byte codes 
sent from every PC-compatible keyboard to the motherboard. You got one scan code when 
pressing a key and another scan code when you released the key. Early PC games made use of 
these all the time. Well, those scan codes aren't generated automatically; there's no special 
mechanical switches inside your keyboard that emit ASCII bytes. There's an 8048 
microprocessor (or a clone) in your keyboard that laboriously polls all the keys and sends a byte 
down the cable every time something moves up or down. The same little processor also lights the 
LEDs on your keyboard at appropriate moments. That's why your keyboard LEDs sometimes 
keep working even when Windows is locked up solid.  

With so many different processors on the market at one time, it's tempting to wonder who the 
winners and losers will be. Who will be the dominant CPU player--the Intel Pentium--of the 
embedded market? When is the shakeout coming?  



There is no shakeout coming. There are lots of embedded processors on the market because 
there needs to be a lot of embedded processors on the market. Intel dominates the desktop only 
because all computers are more or less the same. One processor can serve them all. That's not 
true of embedded systems at all. No, the number of different embedded processors is growing, 
not shrinking.  

Lots of today's embedded microprocessors started out as high-end computer processors that 
didn't make it. MIPS, 68K, SPARC, ARM, PowerPC--they're all failed desktop processors that 
have wound up as embedded processors by default. None of these popular chip families started 
out as embedded processors. Their marketing managers never intended them to be used in video 
games, network switches, or pagers. No, they all had far more grandiose plans for their little 
children, as we'll discuss shortly. But even with such grand plans, notice the figure below depicts 
dominance is fleeting in the embedded business. It highlights a decade worth of embedded-RISC 
market share (the CISC-based 68K embedded processors are not shown, nor are any embedded 
CISC-based x86 family components) and how frequently--and rapidly--the lead changes.  

In the very early 1990s, SPARC was a big winner primarily because it was one of the few RISC 
processors even available for embedded use. Sun was an early pioneer in promoting its high-end 
workstation processor for embedded use. The company still does license and promote embedded 
SPARC processors, but its early lead rapidly eroded as other companies entered the market.  
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We'll look more closely at many of the popular embedded chip families in subsequent pages.  

Motorola's 68000 (68K) family is the old man of the embedded processor market, and the most 
popular 32-bit processor family in the world until just a few years ago. Sun originally used 68K 
processors in its first workstations, and all Macintoshes were 68K-based until PowerPC came 
along. Now 68K chips are almost always used for embedded systems, and Motorola still sells to 
the tune of about 75 million chips per year.  

The whole 68K family is an example of CISC architecture that fell out of favor in PCs long ago, 
but still has some strong advantages for embedded usages. All 68K chips are binary compatible, 
and they have some of the best software development and debug tools found anywhere. Even 
though the 68060 processor topped out at a pathetic 75 MHz in 1994, the whole 68K family still 



goes strong, mostly because designers love it, and because so many of the chips are already 
designed-in to millions of existing products.  

x86 Overview 
The "x86 family" refers to Intel's architecture that started with the 8086 (Thanks to forum member 
JPMorgan for the correction from our previous indication that it was the 8080 -- we agree, though 
some loosely consider the 8080/8085 as the real beginning of the x86 family, since the 8086 tried 
to maintain a certain degree of compatibility), through the '286, '386, and '486, and continues to 
this day with Pentium 4 and AMD's Athlon, and is even extended to include a 64-bit mode in 
AMD's upcoming Hammer. We all know that x86 processors dominate PC systems. But in 
embedded sales, x86 chips like the '486DX rank a distant fifth in sales behind the ARM, 68K, 
MIPS, and SuperH. That doesn't make them unsuccessful--there are more than a dozen 
competitors that rank even lower--but it's far from dominance.  

Like the 68K family, the x86 family is an example of CISC architecture. It is one of the longest-
lived CPU designs ever. Today's Pentium 4 can still run 8086/8088 software unmodified. That's 
both good news and bad news. The good news is that all x86-family chips are compatible, which 
is, of course, why we keep buying them for our PCs. The bad news is that the x86 is a miserable, 
old-fashioned, inefficient design that should have been scrapped long ago. In almost every 
measure, x86 chips are the slowest, most power-hungry, and hardest to program processors 
around. Almost anything would be better, and most of the alternatives are, which is why there's 
so much competition for embedded processors.  

SPARC Overview 
SPARC is best known as the processor used in Sun workstations, but it wasn't always that way. 
SPARC was one of the first RISC designs to see the light of day and also one of the first to be 
used in embedded applications outside of its original market. In the early 1990s, embedded 
SPARC chips were actually pretty common. Now they're almost nonexistent.  

SPARC, like ARM and MIPS, is a licensed architecture. Sun doesn't actually make processors, 
so don't go looking for chips with the Sun brand name on them. A few years ago there were close 
to ten companies making SPARC processors, all different. Sun was really the only big customers 
for them, though, so almost all of the SPARC makers went out of business. TI and Fujitsu are the 
only significant SPARC chip developers left, and this early pioneering architecture has all but 
disappeared from the embedded scene.  

Similar to SPARC chips in the past, AMD's 29000 processors (remember them?) were also 
popular, particularly in the first Apple laser printers and in some networking equipment. The 29K 
was an exceptionally elegant, high-performance RISC design. It was most notable for its 
whopping 192 programmable registers (most RISC chips have 32; Pentium has eight), which 
made it a programmer's delight. Alas, despite all of the 29K's architectural elegance, it was not 
long for this world.  

Death came at AMD's own hand. Despite years of multimillion-unit sales, AMD simply pulled the 
plug on the entire 29K family in 1995. Why would AMD abandon an entire product line just as it 
becomes the second-best-selling RISC architecture in the world? Because its support costs were 
too high. This sad story underlines just one of the crushing costs associated with developing, 
supporting, and selling a successful microprocessor. In AMD's case, the 29K was selling well but 
the company had to pour all of its profit, and then some, into software subsidies. AMD was paying 
third-party developers of compilers, operating systems, and other programming tools to support 
the 29K. Such subsidies are typical. Software companies won't arbitrarily develop complex 
compilers or operating systems unless they know there's a lucrative market for such products--or 
unless they're paid up front. In AMD's case, these yearly subsidies were eating up all of the 29K's 
profits. Paradoxically, the world's second-most-popular RISC architecture was losing money.  



As word of the 29K's demise spread, customers started looking for alternatives. Even though 
several 29K chips remained in production for a few more years, the writing was on the wall and 
customers fled to a number of other alternatives, including Intel's i960 family.  

Intel i960 Overview 
The i960 was once the best-selling RISC architecture on the planet, bar none. It was a terrific bar 
bet: ask any Sun employee to name the most popular RISC chip in the world and you were 
guaranteed a free drink. In the early '90s you could find an i960 processor in most every laser 
printer or network router made. The i960 was particularly popular in HP's LaserJet series of 
printers, just as LaserJet sales took off.  

The i960 actually got off to an inauspicious start. Like most embedded chips, and all RISC 
processors, it was originally designed to power workstations. In this case, the chip came out of a 
joint venture between Intel and Siemens called BiiN. BiiN was supposed to develop fault-tolerant 
Unix workstations that competed with Sun, Apollo, MIPS, and others at the time. Alas, the market 
for fault-tolerant Unix workstations was approximately nil, so the two partners parted way and 
BiiN was no more. RiiP.  

As with most divorces, the spoils were not divided evenly. Intel gained control of the processor it 
developed with Siemens and Siemens got… not very much. In fairness, Siemens may not have 
wanted the processor very much. It was expensive, slow, and very power-hungry. The processor 
was also festooned with complex fault-tolerant features that made it difficult to manufacture and 
debug and that had no (apparent) use outside of the workstation market.  

Congratulations to Intel for turning a sow's ear into a silk purse. This cast-off processor, now 
called the 80960 or i960, rapidly found a home in embedded systems. The chip's fault-tolerant 
features were simply never mentioned in Intel's promotional literature and customers were left to 
wonder why the chip was so big and had so many pins labeled "no connect." Over the years, Intel 
eventually excised most of the superfluous features, trimming later i960 chips down to size.  

The i960 family never did overcome its power-hog reputation, though, nor did later chips get 
much faster or much cheaper. By the mid-1990s the i960 line could be relied on to deliver the 
worst price/performance ratio of any 32-bit processor--including the miserable x86. Once again 
hoping to pull a rabbit out of its hat, Intel devised a new market for the i960: intelligent I/O 
controllers. The I2O standard was born, and it cleverly defined requirements that just happened 
to match the characteristics of existing i960 chips. After some initial lukewarm success, I2O 
controllers, and the i960 processors, eventually faded away.  

MIPS, ARM, SuperH, and PowerPC Overviews 
MIPS is a prime example of a high-end computer architecture that is more successful in toys and 
games than it ever was in engineering workstations. MIPS Computer Systems (which got its 
name from "microprocessor without interlocked pipeline stages") was originally a competitor to 
Sun, HP, Apollo, and even Cray. MIPS, the company, was acquired by Silicon Graphics (SGI) in 
the 1990s and SGI immediately started using MIPS processors in all its workstations. Before 
long, MIPS had a reputation for powering the highest end of high-end workstations.  

Sadly, SGI found the workstation business was tougher than anticipated. Weakening profits from 
workstations couldn't support the awesome cost of developing new 32-bit and 64-bit 
microprocessors. Conveniently, at about the same time, MIPS/SGI signed up an unusual new 
customer: Nintendo. The Japanese game maker wanted to use a slightly modified MIPS 
processor in its upcoming N64 video game. This turned out to be MIPS' biggest deal ever--the 
company got two-thirds of its money from Nintendo throughout the late 1990s. Ultimately, SGI 
spun off MIPS as an independent company (again).  



Although MIPS doesn't dominate the home video-game market like it once did, the architecture 
has comfortably settled into the number two RISC position. MIPS has extended its eponymous 
family of processors both at the high end, with its monstrous 64-bit 20Kc family, and at the low 
end, with SmartMIPS, a minimal 32-bit design for smart cards and other ultra-low-power systems. 
There's probably no other CPU family that reaches so high and so low while remaining software 
compatible throughout the line.  

ARM Overview 
ARM (formerly Advanced RISC Machines) also started out as a computer processor, but 
ultimately failed in that market, too. Now ARM is one of the most popular 32-bit embedded 
designs around. The English company was originally called Acorn, and its older BBC Micro 
computer was the British equivalent to America's Apple II or Commodore 64. The BBC Micro was 
probably the first commercial deployment of RISC technology, and many a British computer 
hobbyist learned the trade on a home-built BBC Micro computer with an ARM processor. Editor's 
Note: We want to thank forum member Graham (Hattig) for pointing out the Acorn Archimedes, a 
follow-on to their BBC Micro, was actually the first to use an ARM processor -- the BBC Micro 
used a 6502. Thanks Graham.  

Apple, IBM, Commodore, and other early computer vendors ultimately overwhelmed the BBC 
Micro, but its processor design lived on. In recent years, the ARM architecture has challenged for, 
and then overtaken, the RISC lead. ARM's biggest volume wins have been in a number of digital 
cell phones, particularly those manufactured in Europe (ARM is the only European entry in this 
race). ARM's simple design gives it small silicon footprint, which, in turn, gives it modest power 
consumption. Its comparatively low power combined with its ability to be embedded into high-
volume ASICs gave ARM a leg up in mobile phones.  

Just as ARM seemed about to run out of gas, Digital Semiconductor (part of DEC) surprised the 
world with a technical tour de force: StrongARM. Using the same silicon technology it used with 
its phenomenal Alpha processors, Digital more than quadrupled the best speed anyone had seen 
in an ARM-based chip. Unfortunately, about that same time, Digital suicidally chose to sue Intel 
over an unrelated patent infringement. Intel settled the case quickly - by buying Digital 
Semiconductor lock, stock, and barrel, including the rights to StrongARM.  

StrongARM now lives on under the new name of XScale (heaven forbid that Intel use the name of 
another processor company). The first XScale chips are part of Intel's new "Personal Internet 
Client Architecture" (PCA) and promise to maintain the high standards set by the late lamented 
Digital Semiconductor.  

SuperH Overview 
Hitachi's SuperH, or SH, processors have been around for more than a decade but they were 
almost unknown outside of Japan until recently. The SuperH family of chips includes some 16-bit 
and some 32-bit processors, most with added peripheral I/O and special-purpose controllers. 
SuperH's big hit was with the Sega Saturn video game, followed by the Sega Dreamcast. You'll 
also find SuperH chips in some of the handheld Windows CE computers from Compaq and 
Casio. The SH7750 processor was designed especially for Sega and includes some fantastic 3D 
geometry instructions that outstrip anything an x86 processor can do. The SH7750's features 
may not be as general-purpose as those in 3DNow!, SSE, or even MMX, but if you're rendering 
objects in simulated 3D space, SuperH has got you covered.  

PowerPC Overview 
PowerPC started squeaking into the embedded scene around 1996. Within two years, there were 
more PowerPC chips being sold in embedded applications than in computers (such as 
Macintosh), making PowerPC "officially" an embedded processor that just happened to also be 



used in a few computers. Even so, PowerPC remains a marginal player in the overall embedded 
landscape, selling more than SPARC but less than most 32-bit competitors.  

The list of vendors above is by no means complete. We could fill another article on the other 
choices available just among 32-bit embedded processors. There are more than 115 different 32-
bit embedded chips in production right now, all of them with happy, healthy users who love them. 
History shows that no company holds the lead for long in the embedded market. Maybe in a few 
years one of these players will be sitting at the top of the heap.  

• Lexra - this Boston company started off selling a pretty good clone of the MIPS processor 
family but has since branched out into network processors with its NetVortex product line. 

• PicoTurbo - like Lexra, PicoTurbo first made its name cloning ARM processors. Legal 
troubles and technical limitation led to branch out into other 32-bit applications. 

• Improv - this company's Jazz processor is insanely complex and terrifyingly powerful. 
Both the hardware and the software are user-configurable and the chips are highly 
parallel. Not for the faint-hearted. 

• Cradle Technologies - Another ambitious design, the universal microsystem (UMS) is a 
completely programmable chip that seems like it can do a million things at once. 

• ARC Cores - this is the first company to invent a user-configurable microprocessor: a 32-
bit design where you get to decide what instructions hardware features it supports. It's 
like Lego blocks for CPUs. 

• NEC - in addition to being a MIPS manufacturer, NEC sells its own V800 family of 32-bit 
processors that are popular in disk drives and other deeply embedded applications. 

• Tensilica -this company's Xtensa processor is also user-configurable, with options for 
shifters, arithmetic, and bit-twiddling.  

• Elixent - what ARC Cores did for RISC processors, Elixent is doing for DSPs. This user-
configurable design can replace several different processors with one that changes its 
stripes on the fly. 

• Zilog - remember these guys? In addition to the venerable Z-80, Zilog has 16-bit and 32-
bit processors as well as DSPs. None of them is particularly well known but they keep 
selling as long as Zilog is around to make 'em. 

• PTSC - this San Diego company has a stack-based processor that's good for Java or 
anywhere code density is a prime concern. 

• Xilinx - the FPGA giant now has its own processor family, MicroBlaze. You can only get it 
as part of a Xilinx logic chip but for many users that's just fine. 

• Altera - another soft-processor alternative. NIOS is an Altera-only design embedded into 
a number of the company's programmable-logic chips. 

• VAutomation - with AMD and Intel both out of the low-end 286- and 386-based 
embedded x86 business, this may be your best source for 286- and 386-compatible 
processors. VAutomation also has its own V8 RISC processor. 



• Transitive Technologies - not really a CPU company, but a software firm that thinks 
they've cracked the problem of emulating other chips. With Transitive's code you can run 
MIPS software on a PC, or vice versa. The possibilities are endless and mostly weird. 

• And the list goes on… 

That concludes the first segment of our three-part series. Next, we'll cover embedded processor 
benchmarking, custom embedded processors, Java chips, and key embedded processor features 
that allow them to be so useful in numerous embedded applications.  

 
Embedded Processors, Part Two 
January 14, 2002 
By: Jim Turley  
 
 

In Part One we provided an overview of the embedded processor market and reviewed the key 
players and their products. In this segment, we'll drill deeper into variations on the embedded 
theme, such as Java chips and various types of custom embedded processors. We'll also look at 
unique microarchitectural features and programming constructs that differentiate embedded 
processors from mainstream CPUs. Finally, we'll cover some methods of measuring embedded 
processor performance, which is no easy feat.  

Java Chips  
One class of processor that seems perpetually just over the horizon is Java chips. These are (or 
were planned to be) specially designed processors that executed Java bytecode natively, without 
an interpreter or compiler. Apart from being spectacularly ironic (the whole point of Java was to 
be CPU independent!), it's also stupendously difficult. Java runs poorly on all of today's 
microprocessors. This isn't because the good Java processors aren't here yet. It's because Java 
is innately difficult to run, regardless of what hardware it runs on. So far, Java has heroically 
resisted all attempts to improve its performance.  

Not that many haven't tried. Sun itself, the original percolator of Java, proposed but then 
abandoned plans for a whole series of Java processors. MicroJava, PicoJava, and UltraJava 
were announced around 1998, with first silicon expected by 1999. Apart from a few sample 
prototypes, nothing ever came of the MicroJava 701, the first chip in the planned series. Sun then 
tried licensing PicoJava to a handful of Japanese vendors, but again nothing came of it. UltraJava 
never even got off the drawing board.  

There's also been plenty of activity outside Sun. PTSC, Nazomi Communications (originally 
named Jedi Technology), and others have all toyed with hardware acceleration for Java. PTSC's 
Ignite-1 processor did a good job of accelerating the easy parts of Java. It's stack-based, like 
Java itself (and like HP calculators), so fundamental functions work smoothly and efficiently. But 
where all processors fall short is in accelerating the difficult parts of Java, such as garbage 
collection and task threading. It is precisely these sorts of functions that give Java its portability 
and power, and that also make it practically impossible to function entirely in hardware.  

Java Accelerators  
In the end, every company has retreated from the goal of an "all-Java" processor and fallen back 
on providing "hardware assists" for Java, while leaving the complex and awkward functions to 
software. As accelerators, these work fine. Just don't assume that they really run Java bytecode 
natively. Six examples of these accelerators are provided in the following table.  

http://www.extremetech.com/article/0,3396,s%253D1005%2526a%253D21014,00.asp
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ARM's Jazelle bolts onto a special ARM9 core, so this has the advantage of being ARM 
compatible, if that's interesting to you. On the downside, Jazelle uses some of the ARM 
processor's resources in handling Java, so performance on normal (non-Java) code will suffer. 
Nazomi's Jstar is similar in concept: it's a coprocessor for an existing processor. One advantage 
of Nazomi is that its accelerators can theoretically work with any processor, although MIPS is the 
only one it currently supports. InSilicon's JVXtreme is much the same-- it can be used in tandem 
with most other CPUs. Its small size makes it cheap to manufacture in volume, but also limits its 
performance because there's not much hardware there to provide an assist.  

MachStream from Parthus promises better performance than any of the above coprocessors, but 
you pay for it in larger circuit size and increased memory usage. Both DeCaf (from Aurora VLSI) 
and Xpresso (from Zucatto) are closer to being standalone processors, although they can be 
used as coprocessors if you wish. Because both can be used standalone, they're pretty big as 
these things go. On the other hand, both promise better performance than their more lightweight 
competitors.  

This is probably about as far as Java processors will go. Some very bright minds have looked at 
the problem and there's just not much more help that hardware can give. Java was invented to be 
hardware independent, and it looks as though it's succeeded.  

If you yell "embedded processor" in a crowded theater, some people will think of processor chips 
soldered onto printed circuit boards, while others will think of "soft cores" designed into custom 
chips, and the rest will think you're a lunatic. All three groups of people are correct, but the days 
of buying processor chips off the truck are slowly disappearing as more people sink processors 
into their own ASICs (Application-Specific Integrated Circuits).  

Ten years ago, designing a custom gate array or ASIC was a big deal. If you were one of the 
lucky engineers assigned to the project, it was a prestige job. Nowadays, designing a custom chip 
is pretty common. It's not exactly kitchen table casual, but it's certainly easier and less 
intimidating than before. Today's EDA (Electronic Design Automation) tools have brought chip 
design within the reach of most companies. The genie is out of the bottle.  
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These numbers from Gartner/Dataquest show that sales of custom- or customer-designed chips 
has been growing steadily for the past few years. Note that the chart is titled System-on-Chip 
Growth. System-on-Chips, or SoCs, are custom chips implemented with ASIC/ASSP design 
techniques. SOCs incorporate numerous logic functions onto a single chip, instead of requiring 
multiple discrete components on a larger and more expensive printed circuit board. Expectations 
are that this market will continue to grow nicely. This chart makes a distinction between ASIC 
chips and ASSP chips (Application-Specific Standard Product) -- an ASIC is designed by one 
company for its own use, while an ASSP is designed for sale to a narrowly defined segment of 
customers. The difference is only in semantics and the sales channel-- the technology is exactly 
the same.  

At over $20 billion per year in 2002, this is no small market! Furthermore, these numbers count 
only chips that have one or more internal, or embedded custom processors. That's $20 billion in 
processor-based chips that didn't come from a traditional microprocessor maker like Motorola, 
Fujitsu, or Intel. Instead, these were licensed CPUs – the recipe for a microprocessor.  

In the past few years, licensing CPUs instead of selling chips has become the hot business 
model. Why make chips when you can sell the recipe? Chip factories (foundries) cost over a 
billion dollars, but licensing costs almost nothing because you don't actually make physical chips. 
Technology licensing has been compared to the world's oldest profession: you sell it, but you've 
still got it to sell to someone else, over and over.  

And, indeed, this business is not new. Examples are Dolby Labs and Adobe, both of which 
license their technology (for noise-reduction and PostScript, respectively) to a number of product 
makers. You can't buy Dolby stereo equipment or Adobe laser printers, but their technology, and 
sometimes their logo, is in the product.  

Processor licensing takes this one step further. Instead of making and selling physical CPU chips, 
some companies license their CPU design to manufacturers instead. This has advantages for 
both sides: the licensing company doesn't have to invest a billion dollars in a semiconductor 
foundry, and the licensee has the freedom (albeit limited) to manufacture the chips when and how 
they please. It's the difference between being an architect and being a building contractor.  

All of today's processor companies fall squarely into one category or the other. They're either 
architects licensing their designs, or they're contractors building and selling real chips. The latter 



category is shrinking while the former one is growing. Intel, Motorola, Texas Instruments and 
most of the other "old economy" chip companies are chip manufacturers that do not offer their 
designs for license to outsiders.  

Younger companies like ARM, MIPS, ARC Cores, and PicoTurbo are in the other category: they 
don't make chips – never had, never will. Instead, they turn over their "core" designs to 
companies that will make chips, for a fee. Rambus uses a similar business model, though 
obviously for its DRAM interface, not processors. Companies like VAutomation, inSilicon, 
Parthus, Tality, and Syopsys also license IP for other "components" such as USB, Ethernet, 
timers, DMA, and MPEG controllers, among many others.  

If you're designing a custom ASIC, using a licensed microprocessor makes all the sense in the 
world. You can put the processor inside your ASIC instead of beside it. A licensed processor 
gives you access to existing software, operating systems, compilers, middleware, applications 
code, emulators, and so on.  

A big benefit to embedding a licensed CPU is that you can build your chip your way. Before ASIC 
cores, you had to settle for the package, speed, power consumption, and price that your CPU 
vendor set. If that chip was discontinued, you were out of luck. If the chip was too slow and the 
vendor didn't offer a faster one, you lost out again. A licensed core provides at least a little bit of 
control over your own destiny.  

One complaint about CPU licensing has been the cost. A few years ago, ARM and MIPS used to 
charge more than a million dollars for a license. For your money, you got access to one 
generation of the processor architecture, such as the ARM7 or the MIPS R4200. Subsequent 
generations cost extra. You also had to pay royalties for each chip that used the CPU core. 
Royalty rates vary, but figure on about $0.35 to $2.00 per chip, with the cheaper rates available 
only after you've shipped hundred of thousands (or maybe millions) of units. Not an inexpensive 
undertaking.  

Those prices have come way down. ARM and MIPS are generally still expensive but some newer 
companies license 32-bit cores for $250,000 or so. Simpler 8-bit and 16-bit cores can be had for 
under $75,000. Royalties seem to be holding steady though, at anywhere from $0.25 to $2.00 per 
chip.  

Embedded CPU cores have enabled a whole wave of new products. Would Nokia really be able 
to fit a separate processor chip into their tiny cellular telephones? For today's smaller, battery-
powered devices there is no alternative to designing a custom ASIC, and that means licensing a 
processor core.  

Actually, it often means licensing more than one. According to Gartner/Dataquest, intelligent 
ASICs already average 3.2 processors per chip, and the number is going up. It looks as though 
licensed CPUs are the wave of the future.  

Next, we'll delve into some of the technical aspects of embedded processors, and what makes 
them so desirable to programmers and system designers.  

What do Tweedle Dee and Tweedle Dum have to do with embedded processors? Not a lot really, 
but they help me introduce bit twiddling: the ability of some processors to handle individual bits in 
memory. Bit twiddling is a useful capability provided by some embedded processors.  

By "bit twiddling" I mean bit manipulation--setting, inverting, testing, or clearing individual bits in a 
register or in memory. Most RISC processors can't do this, but most CISC chips can. Bit twiddling 
is fantastically helpful for encryption algorithms, for calculating checksums, for controlling 



peripheral hardware, and for most device drivers. There's lots of times where you'd like to check 
whether, say, bit 4 of a certain status register is set, or you'd like to invert bit 12 of some control 
register. Well, lots of times if you're an embedded programmer, that is.  

To see the value of bit twiddling, let's consider the alternative. Say you're checking the status of 
an Ethernet controller chip to see if some new data has arrived. Most controller chips have a 
status register with a bit that goes high when a new packet has arrived. To check if, say, bit 4 has 
gone high yet you'd have to read the entire register (more likely, the entire 32 bits surrounding the 
register) at once. That action by itself may screw up the Ethernet controller; many peripheral 
chips refresh their status every time you read them, so touching unnecessary parts of the 
controller is destructive.  

After you've gobbled the status bit (plus 31 other bits you don't care about) you'd need to mask 
off the other 31 bits with an AND instruction – assuming you've got the mask value already stored 
somewhere. Then you check the result against zero. As an alternative, you could shift the value 
you read by four bits to the right and check if you've got an even or an odd result (an odd results 
means bit 0 equals 1). Then you may or may not have to store the status bit back again; some 
controller chips like you to acknowledge that you've read the status correctly.  

Or – and here's the good part – you could use a processor that can bit twiddle. The whole 68K 
family has a BTST (bit test) instruction that tells you whether any arbitrary bit anywhere in the 
world (okay, anywhere in your system) is either set or clear. If you want, you can use BCLR (bit 
test and clear) to test and then automatically reset the bit, all in one instruction. The BSET 
instruction does the opposite.  

This is useful stuff if you're flipping bits in an encryption algorithm or a checksum, or testing 
densely packed data structures. It's also useful for finding the ends of data packets, which are 
often marked with a "stop bit." The list goes on.  

Code density is an all-important factor that most PC users don't care about at all. Quite simply, 
"code density" measures how much memory a particular program written for a specific CPU 
consumes. This is a function of the chip, not the program. It's also called "memory footprint" and it 
varies quite a bit from one processor to another. For embedded programmers, this is a big deal. 
For Microsoft, it's obviously not.  

If you're a programmer, you already know that the same C program might compile into a bit more 
or a bit less memory depending on the compiler, or on the optimization switches you use. But the 
memory footprint will also be affected by the choice of processor chip. The same C program 
compiled for a SPARC processor will probably be twice as big as the same program compiled for 
a 68030. This has nothing to do with the compiler, and there's nothing you can do to change it; it's 
an inherent characteristic of the SPARC and 68K processors themselves. Welcome to code 
density.  

When you're writing code for a small, cheap embedded system like a cellular telephone, memory 
footprint is a huge deal. It's common for embedded products to be limited by their memory, not 
their performance. MP3 players are priced based on memory capacity. Squeezing that MP3 
operating software into a little memory as possible is critical. Embedded programmers tend to 
rank their favorite processors based on code density instead of performance, power, or price.  

How much difference does code density make? Well, ratios of 2:1 or bigger are pretty common. 
For instance, a SPARC processor will probably give you half the code density (twice the memory 
usage) of an x86 chip like a 386, 486, or Pentium. That's just the nature of these chips and 
there's nothing you or your compiler can do about it. The rule of thumb is that CISC processors 
(such as the x86 and 68K) have almost twice the code density of RISC processors (such as 



SPARC, ARM, MIPS, and PowerPC). Thus here's a case where CISC outshines RISC. If you're 
spending more on memory than on your processor, you could almost double your money by 
switching processors.  

Within these categories, there is a lot of variation. For example, PowerPC chips generally have 
slightly better code density than SPARC chips. ARM is better than MIPS. SuperH is better than 
ARM. And so on. There's no official list or ranking because it depends so much on the particular 
program you're compiling. The numbers above are averages; your mileage may vary.  

Where Does Code Density Come From?  
One thing that gives RISC processors poor code density is the very thing that their name 
represents: reduced instruction sets. By definition, RISC chips support only the minimum number 
of instructions necessary to make a computer work. Anything that can be done in software is 
removed from the hardware. This makes for comparatively small and streamlined chips, but it 
bulks up code terribly. Many RISC chips can't do simple multiplication or division, so 
programmers get the thrill of recollecting their high school days and proving that multiplication is 
simply repeated addition. Likewise, integer division is usually synthesized from shift-right, mask, 
and subtraction operations.  

RISC chips have lousy code density compared to their CISC cousins, but CISC instruction sets, 
in contract, have grown over time, adding features and instructions like a ship accumulating 
barnacles. Sometimes these additions aren't elegant or orthogonal but they get the job done. An 
example is Motorola's TBLS instruction, which appears on several chips in the 68300 family. It's 
an unusual instruction that's either totally worthless or worth any price, depending on what you're 
building. In brief, the TBLS (table lookup and interpolate) instruction figures out the missing 
values in a sparse table. You define the data points in an XY graph, and TBLS interpolates the 
missing value in between those points. It's tremendously useful for systems with nonlinear 
responses or that use nonlinear algorithms, such as motor control. The TBLS instruction is only 
16 bits long and executes in a handful of cycles, but it replaces a mountain of if-then-else 
statements in a C program. And it's faster. Hooray for CISC.  

Transferring stuff to and from memory seems like a sort of basic feature, doesn't it? Yet different 
processors do this in different ways, and it matters more than you might think. We're not talking 
about bandwidth or latency here. We're talking about alignment, and whether a processor is even 
capable of doing the task you want.  

In the RISC view of the world (which is to say a workstation-centric point of view), everything in 
memory is neatly organized in nice even rows. Everything is arranged in 32-bit chunks and all the 
chunks are conveniently aligned in memory because the compiler put them there. This makes 
designing the chip easier (always a high priority for RISC) because when your memory is 32 bits 
wide and all the data is 32 bits wide, you can always grab a whole 32-bit chunk in one go.  

Ah, but in the real world things aren't always so tidy. Particularly when you're dealing with network 
data or communications packets, where data storage can be messy. TCP/IP headers aren't 32 
bits long, and checksums or CRCs can be odd lengths like 20 bits, or 56 bits. Video data is also 
peculiarly organized, and encryption keys are who-knows-how long. When you've got odd-sized 
data packed together, your nice, neat alignment goes out the window. Operands often "wrap 
around" a 32-bit memory boundary, starting at one address, but finishing at another. Even 32-bit 
quantities might be stored at odd-numbered addresses, forcing a wrap around the natural 
memory boundary. In a 32-bit system, odds are three-to-one against such unpredictable data 
falling on a natural 32-bit boundary.  

Most RISC chips can't handle this situation at all. They are congenitally incapable of loading or 
storing anything other than 32 bits at a time -- and those must be aligned on a 32-bit boundary. 



Even if you're a hot-shot assembly language programmer, you simply cannot make a MIPS 
processor (for example) load a byte from an odd address. It's not in the instruction set.  

Most older CISC processors, on the other hand, have no problem with this. The whole x86 family, 
from the earliest 8080 to the newest Athlon and Pentium 4, does this all the time. Yes, this is a 
case where x86 does shine. Motorola's 68K chips also eat unaligned data operands for breakfast.  

The moral here is this: if you're designing a system that has to handle unaligned data, take a 
good look at the back of the datasheet for your processor. Nobody broadcasts the fact that they 
can't do unaligned loads and stores-- you'll have to look closely at either the bus interface or the 
instruction set for clues. Without unaligned data transfers, you'll have to force all your data 
packets to be aligned somehow. Or come up with a software trick to split operands into neat 
chunks and store them on aligned addresses. Yuck.  

No, this is not the WPA procedure to make your new copy of Windows XP run (polite groans, 
please). This is an unusual way that some processors manage their registers. Or manage to keep 
you away from them, really.  

If you've done any programming before, you know that all CPUs have registers. Some have a lot 
-- the late AMD 29000 had 129 registers -- and some have just a few, like Pentium's pitiful eight 
general purpose registers. Generally speaking, the more registers, the merrier, because it gives 
you more space to store intermediate values and a bigger "workspace."  

When you run out of registers, it's generally time to push stuff onto the stack or to store it as a 
variable in memory. Passing parameters (arguments) to a subroutine or object also uses either 
registers or the stack. Register windows attempt to fold these two techniques into one, to reduce 
memory overhead and speed up function calls. It works, kinda.  

Note the figure below shows how a processor with register windows appears to the programmer. 
In this example, you've got eight registers that you can actually "see." This is your register 
window-- the rest of the registers are invisible to your code and you can ignore them. Every time 
you call a subroutine, however, this window shifts slightly, covering up some of the registers you 
can see, while uncovering others. You always see only eight registers at a time -- it's just not 
always the same eight registers.  

 



Weird, huh? The idea behind this is to encourage you to pass parameters by using registers 
instead of the stack (which is much slower). In our example, the two register windows overlap by 
two registers. That is, the last two registers in one window are physically the same as the first two 
registers in the next window. The window shifted by six registers.  

When the called function or subroutine starts, it already has two parameters loaded into its 
accessible registers. Voila! No need to push and pop stuff off the stack between function calls. At 
least, not unless you're passing more than two parameters. That's why most chips with register 
windows have variable overlaps. You get to specify how many registers are shared between 
parent and child tasks. More overlap gives you more room for parameter passing, but less room 
for general-purpose storage.  

Register windows are most commonly associated with SPARC processors used in Sun's 
workstations, although Tensilica processors use register windows as well. In SPARC's case, the 
windows are circular; the last register window "wraps around" and overlaps the first window. In 
all, you get about eight complete windows. After that, you have to resort to using the stack like 
everyone else.  

Register windows are a neat idea -- so how come everyone doesn't use them? Well, my friends, 
because they're not really all that great. People have been studying computer science for 
decades and almost no one chooses register windows. Not because it's patented or anything, but 
just because there's hardware and software problems with it. On the hardware side, windowing 
the register file means designing in lots and lots of multiplexers. The chip has to make it appear 
as if any physical register could be any logical (programmer visible) register, and that requires a 
lot of wires, switches, and multiplexers. If you've noticed, SPARC processors are about the 
slowest RISC chips you can buy. That's partly because the hardware for register windows is so 
complex and hard to make work fast. Many CPU silicon designers in the 1990s complained 
bitterly about the rat's nest in the center of SPARC chips for that reason. Note that Intel's IA-64 
processors have register frames, which are similar to SPARC's register windows, but they can be 
dynamically sized and are more flexible than the SPARC implementation. While the IA-64 design 
is interesting, we likely won't see many high-volume, low-cost IA-64 embedded designs for a 
long, long time.  

The software problem is a bit more subtle. When your processor runs out of register windows it 
has to start pushing stuff onto the stack. That's all automatic, so don't worry about accidentally 
overwriting your registers. No, the problem is in predicting performance and finding bugs. 
Determining exactly where in a program you'll overflow the registers is nearly impossible, so 
estimating performance is tough. A random interrupt here or a particular parameter there might 
cause the windows to rotate one extra time, overflowing onto the stack. If you're concerned about 
deterministic performance, you can forget register windows. You'll also drive yourself mad trying 
to figure out why the exact same code runs faster 87% of the time and slower 13% of the time.  

Code never runs in a straight line. Or if it does, you're not trying hard enough. Lots of studies 
show that about 15% or more of most programs are branches -- which is kind of a shame, 
because branches don't actually do any real work. They're the skeleton on which we hang the 
real meat of the program. Branches are also bad because they waste a processor's time, and the 
faster the processor, the more time it wastes. That's because branches upset the train of thought 
going on inside a fast microprocessor. Programs are light freight trains-- the more boxcars you've 
got moving the harder it is to suddenly sidetrack them.  

In microprocessor terms, the boxcars are pipeline stages, but we'll refer you to ExtremeTech's 
story called "PC Processor Microarchitecture" for more details. As processors got faster their 
designers spent more and more time trying to figure out how to avoid branches. Their conclusion: 
you can't. So the next project became finding a way to predict the direction a branch will take. If 
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the processor knows ahead of time where the branch will go, it's not really a branch anymore, is 
it? Their conclusion: you can't do that 100% of the time either. Bugger.  

So that leaves us with trying to minimize the ill effects of branches through a number of bizarre 
and nefarious means. The simplest form of branch-damage-control is to do nothing at all. This is 
what most older processors, circa 1980 do. They simply assume the code will "fall through" all 
branches and blindly fetch code in a straight line. If the branch is taken, some amount of code is 
thrown away. This isn't a huge problem because older processors have short pipelines, so there's 
not much to undo (remember the boxcars?).  

In a sense, older CISC processors like the early 68K and x86 chips assume that all branches will 
not be taken, by default. Mispredicted (that is, taken) branches cause the processor to flush its 
pipeline, find where the branch goes, and start over at that point. As I said, that's not a lot of 
damage when you're only moving at 33 MHz and have short pipelines.  

The next step up the evolutionary ladder is static branch prediction. Static, because it's fixed in 
the code and can't change. In this case, there's really two forms of prediction for every branch 
instruction-- branch (probably) and branch (probably not). PowerPC chips have this feature, and if 
you're a PowerPC programmer you can choose which form to use. PowerPC compilers do this on 
their own, based on some basic statistics. Branches that point backwards are very likely to be 
taken because they're probably at the bottom of a loop. Branches that point forward are iffy; they 
could go either way, so compilers usually assume they will not be taken. You can override this 
decision logic as a programmer, if you know something the compiler doesn't.  

Next we get into dynamic prediction, which accomplishes in hardware what static prediction did 
with the compiler. Here, the chip itself makes a SWAG about the likelihood of branching. In its 
stupidest form, the processor might just assume backward, yes; forward, no. In reality it gets 
much sexier than this. Midrange embedded MIPS and SPARC chips keep one or two bits of 
history about the last few branches they encountered (these are called global history bits). These 
simple counters make use of temporal locality, the tendency of programs to branch frequently and 
in groups. If the last few branches were taken, the thinking goes that the next few are likely to be 
taken, too.  

Local history bits are more advanced and record the taken/not taken history of individual 
branches, rather than lumping all branches together. Higher-end RISC processors and even the 
newer CISC processors often have this feature, but it's tricky to implement. You can't actually 
expect the chip to record the history of every branch in your program. How many should it plan 
for? Instead, these chips combine branch prediction with caching to produce a branch-history 
buffer, or BHB. This is a cache of taken/not taken history bits for as many different branches as 
the cache has room to hold... Like any cache, it's not perfect but it helps. It's possible that the 
BHB cache may thrash badly if two branches happen to fall on the same BHB cache line, or that 
one branch's history gets ousted by another branch, but that's the way these things go.  

Beyond this, processors can get into all sorts of weird prediction mechanisms that include 
saturating counters, multiple global and local predictors, hashing algorithms, and even weighted 
combinations of all these. It's worth almost any amount of silicon to eke out more accurate 
predictions. For a fast processor, anything else would be a train wreck. As expected, you'll see a 
variety of branch prediction techniques across the various embedded processors.  

Speaking of caches, most embedded processors have them by now. Some even have 
configurable or variable-sized caches. Yet not everyone really likes caches. Some programmers 
prefer not to have a cache in their system and may try to disable when if it's already built-in.  



Why the occasional antagonism for caches? Because they are not deterministic. That is, caches 
lead to irregular and slightly unpredictable behavior. For some classes of embedded systems, 
predictability is important and anything that adds uncertainty -- even if it improves performance -- 
is a bad thing. Antilock brake systems, robot control, some laser printers, and many medical 
applications cannot use caches because it's too hard to prove that the system is reliable under all 
circumstances.  

For the rest of us, caches are a boon. They take up some of the slack between processors (which 
get 4% faster every month, on average) and memories --which don't seem to get much faster at 
their fundamental core (versus interface) level at all. The caches on PC processors are kind of 
dull. They get bigger all the time, but they don't really change much. The caches on embedded 
chips, however, offer all kinds of options.  

Cache Locking  
One option is cache locking. This appeases the anti-cache contingent because it allows some or 
all of the contents of the cache to be locked in place, essentially tuning the cache into a glorified 
SRAM. Sometimes you can force certain data (or instructions) into the cache before locking it, in 
which case it really is an SRAM. Other times you take what you get, and locking the cache simply 
disables its normal replacement mechanism. Partial locking is also common, where one-half, say, 
of the cache operates normally while the other half is locked.  

Write-Back Cache  
Another big choice is write-back versus write-through caches. Write-back caches (also called 
copy-back caches) are most common in computer-type systems but not desirable in the more 
industrial embedded systems. When data is stored to a write-back cache, it only goes as far as 
the cache-- the data is not written out to memory. This saves a lot of time, and minimizes bus 
traffic, but it has one drawback: the "memory" might have been waiting for that data.  

Write-Through Cache  
In lots of embedded systems there are peripherals, controllers, and hardware registers all over 
the memory space that need to be updated frequently. A write-back cache will intercept attempts 
to write to these devices, thinking it's helping by caching the data. That's why write-through 
caches are popular in many systems. As the name implies, write-through caches write the data 
"through" the cache to outside memory (or other hardware) as well as caching it. The process 
takes longer but guarantees that all write cycles really do get to where they're going.  

Benchmarks are like sex: everyone wants it, everybody is sure they know how to do it, but 
nobody knows how to compare performance.  

The key benchmark word seems to be MIPS, a term that's often bandied about incorrectly. That's 
understandable, because there are at least four definitions -- MIPS is the name of a company, the 
name of a RISC architecture, and a measure of performance. The fourth definition, and what it 
really stands for, of course, is "meaningless indicator of performance for salesmen."  

Time for today's history lesson, children. MIPS used to mean "millions of instructions per second" 
but it doesn't any more. (Note for the pedantic: There is no such thing as one MIP, it's one MIPS. 
Leaving off the S is like abbreviating miles per hour as MP. So there.) The first computer to reach 
this historic milestone was Digital Equipment Corp's VAX 11/870. In the rush to compare IBM, 
Sperry, and other big computers against the mighty VAX, marketers needed a program that could 
run on all. Enter Dhrystone, a synthetic benchmark originally written in PL/I that could be 
compiled and run on different makers' computer systems. (The name Dhrystone is a pun on the 
word whetstone, a sharpening stone for a knife and the name of another popular benchmark at 
the time.)  



It so happened that the VAX 11/780 could run through 1,757 iterations of the Dhrystone program 
per second. The thinking was that if another computer could also score 1,757 Dhrystones per 
second, it was as fast as a VAX and, by implication, also a 1 MIPS machine. Suddenly, MIPS had 
ceased to measure instructions per second and instead came to mean "VAX equivalents."  

The problem has been getting worse ever since. Dhrystone has been rewritten several times, in a 
number of different programming languages. The C version is most common today. More 
sinisterly, programmers found they could "improve" Dhrystone and speed it up considerably. 
Compiler writers also saw an opportunity to make the benchmark look better by "optimizing" 
Dhrystone in various ethically questionable ways. And, as always, some people flat-out cheated. 
Dhrystone now measures the performance of marketing departments, not microprocessors. It 
could be used to assign pay raises to PR professionals.  

Quick! Call the EEMBC!  
The light at the end of the benchmark tunnel comes from EEMBC, the Embedded Microprocessor 
Benchmark Consortium. EEMBC (pronounced "embassy") is an independent industry group of 
about two-dozen processor vendors, large and small. EEMBC's charter is to throw off the tyranny 
of Dhrystone and replace it with a collection of more useful cheat-proof benchmarks. EEMBC's 
first insight was that no single benchmark score could capture all the dimensions of performance 
that someone might want, so they didn't try. Instead, EEMBC provides a series of narrowly 
targeted benchmarks and allows members to pick and choose the ones relevant to the 
application at hand. For example, there are EEMBC benchmarks for motor control, network 
parsing, image rasterization, compression and decompression, and more. EEMBC scores are 
made public only after EEMBC has independently verified them. You can check out EEMBC at 
www.eembc.org.  

That wraps up Part Two of our introduction to embedded processors, and in our last segment, 
we'll cover digital signal processors (DSPs), media processors, and power-saving tricks.  
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In Part One and Part Two of this series we delivered an overview of the embedded processor 
market and key product families. We also looked at Java chips and other custom embedded 
processors. Then we reviewed some of the microarchitectural and programming features that 
differentiate embedded processors from mainstream CPUs. And we described some performance 
measurement techniques and issues. In this final segment, we'll dig into DSPs, media 
processors, and power saving techniques.  

DSP Processors 
What's a digital signal? Or, more to the point, what's a digital signal processor (DSP)? DSPs have 
burst onto the scene in the past few years, from obscurity to almost a household word. Texas 
Instruments now runs television ads touting "DSP technology" to an audience of football fans that 
has no idea what that means. To tell the truth, a lot of engineers and programmers don't know 
what DSPs are, either.  

What's digital is the processor, not the signals it processes. DSPs are just another type of 
microprocessor, albeit ones with slightly odd instructions. Odd to computer weenies, anyway. 
They're meat and potatoes to mathematicians, sound engineers, and compression or encryption 
aficionados. Even at nerd parties, the DSP engineers and the CPU engineers don't talk to each 
other much. Both sides think the others are a bit strange.  
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DSPs aren't really all that different from CISC or RISC processors. They have registers and 
buses, they load and store stuff to memory, and they execute instructions generally one at a time. 
The most noticeable difference is in their instruction sets. DSPs tend to have lots of math-related 
instructions and relatively few logical operations, branches, and other "normal" instructions. DSPs 
are geared to perform intense mathematical calculations on a limited set of data, over and over. 
They're repetitive convolution engines. The "digital signal" parts comes from their use in 
processing radio, audio, and video data streams – which are inherently analog signals – after 
they've been converted to digital form. Think of DSPs as programmable analog circuitry.  

The DSP market isn't as broad or wide as the general-purpose embedded microprocessor 
market. It's growing fast, but is served by about five big companies (plus a lot of new start-ups 
every week). Texas Instruments is the 500-pound gorilla in the DSP market, with Lucent, Analog 
Devices, and Motorola all battling for second place. Infineon, BOPS, 3DSP, Hitachi, ZSP/VLSI, 
Clarkspur, DSP Group, ARM, 3Soft, and even Intel all play around the fringes.  

Over the last few years, DSPs have started to look more like regular CPUs (but not that much 
more) while CPUs have started to look more like DSPs (but not that much more). Both sides try to 
encroach on the other's territory and produce the "ultimate" processor that can handle both DSP 
and general-purpose processing tasks. Some of these are very popular, but the quest for the 
ultimate unified solution seems hopeless. RISC families like MIPS, ARM, and PowerPC have 
added DSP-like features, but this doesn't make them DSPs. Most start by adding a MAC 
(multiply-accumulate) instruction that helps some DSP inner loops. (Multiply-accumulate is a 
normal two-in, one-out multiply that adds the product to a running total; hence, "accumulate.") It's 
true that DSPs do a lot of multiply-accumulates, but that's not the whole story.  

Bandwidth is what separates a lot of DSPs from the CPUs – the ability to gobble up and spit out 
lots of data, consistently, in an uninterrupted stream. Because DSPs are often used as a kind of 
programmable analog filter, they need to run continuously, without interruption, for long periods. 
That means they need to be reliable (no Windows 9x here) and they needs lots of bus bandwidth 
to shovel data from Point A to Point B. Lots of DSPs therefore have two data buses, X and Y, 
compared to the usual one for RISC and CISC processors.  

Finally, DSPs aren't generally designed to work like microcontrollers, making lots of control-flow 
decisions or performing logical operations. This is why DSPs are often paired up with another 
processor that handles the "overhead" of the user interface, hardware control and other 
housekeeping chores, while the DSP concentrates on crunching numbers as fast as possible.  

Media Processors 
If you thought DSPs were weird, you haven't looked at media processors. These are a class of 
special-purpose embedded processors tweaked for processing pixels, colors, sounds, and 
motion. They're a bit like DSPs, a bit like normal CPUs, and a lot like nothing you've ever seen.  

There are a lot of different media processors out there, though not as many as a few years ago. 
TriMedia, Equator's MAP, BOPS' ManArray, Silicon Magic's DVine, PACT's XPP, and even 
Sony's Emotion Engine chip in the PlayStation 2 are all examples of current media processors. 
Such chips tend to include functional units like variable-length coding engines, video scalers, and 
RAMDACs. Many media processors are used, or intended to be used, for high-definition digital 
television.  
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They also tend to be highly parallel, with many operations running at once as the chip separates 
the audio stream from the video, decompresses the audio, applies Dolby 5.1 processing, corrects 
errors in the bit stream, formats the video for the screen width, inserts the picture-in-picture from 
a second tuner or video source, and overlays the translucent channel guide over the image. Try 
that with your Intel P4 2.2GHz or Athlon XP 2000+ rig!  

Another thing that sets embedded processors apart from their PC and workstation cousins is their 
lower power consumption. On average, embedded processors consume far less electricity than a 
PC processor, and that's not necessarily because they're slower or simpler chips. Power 
consumption is simply not a top priority to Intel or AMD when they're designing PC processors – 
sure they try to cut down power requirements on mobile processors, but resultant power 
utilization is still much higher than typical embedded processors. Power consumption (and the 
heat dissipation that goes with it) can be a very huge deal to some embedded customers.  

Consider your cellular telephone. How useful would it be if the battery only lasted as long as the 
one in your laptop computer – about three hours? And how useful would it be if that battery were 
just as big and heavy as your laptop's? Palm Pilots run for months between battery charges; cell 
phones should last at least a day or two. Sparing the watts is big business in the embedded 
world.  

"Consider your cellular telephone. How useful would it be if the battery only 
lasted as long as the one in your laptop computer – about three hours?"  

Advanced Silicon Process 
The single, most basic trick to lower power usage (but also the most expensive one) is to use a 
leading-edge silicon process to manufacture the chips. Contrary to popular opinion, embedded 
processors are not built on yesterday's cast-off 3.0-micron process by old ladies in hairnets with 
X-Acto knives. On the contrary, chips like Intel's XScale or the SmartMIPS family rely on cutting-
edge silicon like that used for Athlon or Pentium 4.  

Silicon is the most basic determinant of power consumption because of basic physics. The 
formula for power consumption, P=CV2f, says that power increases geometrically with voltage; 
the other terms (capacitance and frequency) have a linear effect. Chip designers can reduce the 



capacitance of their designs all they want, but nothing will lower power like lowering the voltage – 
and that means the latest semiconductor processes. XScale chips operate from as little as 0.65 
volts; so do processor for smartcards. A 3.3-volt power supply is becoming unusual; 2.5-volt chips 
are more common. Pretty soon we'll be able to run 32-bit processors on bright sunlight or the 
current from two lemons and some copper wire.  

Split Power Supplies 
Split voltages are also showing up here and there. Building an entire system that runs on, say, 
1.5 volts can be tough, so some processors have two different voltage inputs: a low-voltage 
source for the processor itself and a comparatively higher voltage (3.3 V, for instance) for the 
chip's bus interface and I/O pins. This allows a very low-voltage chip to still talk to commercially 
available memory and core logic. Digital's StrongARM was the first embedded processor to do 
this.  

Static Logic Design 
After voltage and silicon there's still lots of power-saving tricks embedded in embedded 
processors. Static operation is one. That's the ability to stop the clock dead and freeze the state 
of the CPU as if it was in suspended animation. It's like stopping someone's heart indefinitely and 
then starting it again as if nothing had happened. Obviously, this doesn't work well for people 
(superheroes excepted), nor does it work well for most microprocessors. Pentium, for example, 
loses its mind if its clock input ever goes away. Motorola's DragonBall (used in Palm and 
Handspring PDAs) is one example of dozens of different "static" processors that don't mind 
having their clocks stopped for a few microseconds or a few hours.  

Clock Gating 
Clock gating is another trick. This is a limited version of clock stopping that shuts off parts of the 
chip when they're not being used. CMOS logic transistors only consume power when they're 
wiggling, so shutting off the clock for a few moments can shave a few milliamps off the total 
energy bill. Processors can tell, based on the instructions they're executing, whether you'll be 
needing the MMU in the next few cycles. If not, why not shut it down for a while? Only half of the 
chip might actually be "on" at any given moment.  

Frequency Scaling 
Frequency scaling allows programmers to dial in the amount of power consumption (and 
performance) they want. Not many chips can do this yet, but it's increasing in popularity. You 
store a number in a special scaling register to speed up or slow down the processor's clock 
speed. Power varies in direct proportion to frequency so you get control over power, at the cost of 
performance. More advanced chips can do some of this automatically, similar to Transmeta's 
LongRun, AMD's PowerNow, or Intel's SpeedStep technologies. To get really fancy, though, the 
chip needs access to a variable power DAC (digital-to-analog converter) to dial in its own power 
supply. Nobody offers this yet because the embedded systems that are most concerned with 
power are generally also the ones most concerned with size, weight, and cost, thus making 
variable power DACs somewhat unattractive.  

Time was, embedded processors were looked down upon as the chips that couldn't make it in 
"real" computers. Now that those "real computers" are less than 2% of the overall market, 
embedded seems like a pretty good place to be. And with so-called embedded processors now 
sporting eight-way superscalar and VLIW designs, with speculative execution, they're not so low-
end, either.  

There's a lot more innovation going on in embedded processors than there is in the PC space. 
PC's are constrained by compatibility issues and an endless chase for more straight-line 
performance (and software applications that make use of it). Embedded systems, however, are 



all over the map – literally. There's no such thing as a typical embedded processor and no single 
right way to do something. It's fun to watch if you're a processor nerd.  

"There's a lot more innovation going on in embedded processors than there 
is in the PC space. PC's are constrained by compatibility issues and an 
endless chase for more straight-line performance."  

Embedded processors also tie into everyday life in the real world (RW) more than other children 
of technology. Next year's hot gift will probably be driven by a new embedded processor or two. 
Or four. It's not about "where do you want to go today" it's about "what do you want for your 
birthday?" A key factor in embedded success is getting to the one-spouse decision: the price 
point at which you can buy yourself a cool new gadget without asking permission first. 
Economists say that point is around $299; below that, sales take off.  

Amdahl's Law says that computers are limited by bandwidth, not performance. Moore's Law says 
we get more transistors to play with all the time. Eveready's Law, unfortunately, grows battery 
power much more slowly than our appetite to consume it. Finally, Turley's Law (my own humble 
contribution to journalists' amusement) says that the amount of processing power you carry on 
your body doubles every two years. Pat yourself down and see if you're not already carrying more 
computing horsepower than NASA left on the surface of the moon. And it only gets better from 
here.  

 
 
Copyright (c) 2001 Ziff Davis Media Inc. All Rights Reserved.  
 


