Introduction to Automata Theory,
Languages, and Computation

Solutions for Chapter 4

Solutions for Section 4.1

Exercise 4.1.1(¢)

Let n be the pumping-lemma constant (note this 7 is unrelated to the » that is a local
variable in the definition of the language L). Pick w = 0”"n0"n. Then when we write w =
xyz, we know that |xy| <= n, and therefore y consists of only 0's. Thus, xz, which must be
in L if L is regular, consists of fewer than n 0's, followed by a 1 and exactly n 0's. That
string is not in L, so we contradict the assumption that L is regular.

Exercise 4.1.2(a)

Let n be the pumping-lemma constant and pick w = 0"n”2, that is, n"2 0's. When we
write w = xyz, we know that y consists of between 1 and n 0's. Thus, xyyz has length
between n"2 + [ and n"2 + n. Since the next perfect square after n2 is (n+1)"2 = n"2 +
2n + 1, we know that the length of xyyz lies strictly between the consecutive perfect
squares n”2 and (n+1)"2. Thus, the length of xyyz cannot be a perfect square. But if the
language were regular, then xyyz would be in the language, which contradicts the
assumption that the language of strings of 0's whose length is a perfect square is a regular
language.

Exercise 4.1.4(a)

We cannot pick w from the empty language.

Exercise 4.1.4(b)

If the adversary picks n = 3, then we cannot pick a w of length at least n.

Exercise 4.1.4(¢c)

The adversary can pick an n > (), so we have to pick a nonempty w. Since w must consist

of pairs 00 and 11, the adversary can pick y to be one of those pairs. Then whatever i we
pick, xy"iz will consist of pairs 00 and 11, and so belongs in the language.

Solutions for Section 4.2



Exercise 4.2.1(a)

aabbaa.

Exercise 4.2.1(¢c)

The language of regular expression a(ab)*ba.
Exercise 4.2.1(e)

Each b must come from either 1 or 2. However, if the first b comes from 2 and the second
comes from 1, then they will both need the a between them as part of 4(2) and A(1),
respectively. Thus, the inverse homomorphism consists of the strings {710, 102, 022}.

Exercise 4.2.2

Start with a DFA 4 for L. Construct a new DFA B, that is exactly the same as 4, except
that state g is an accepting state of B if and only if delta(q,a) is an accepting state of A.
Then B accepts input string w if and only if 4 accepts wa; that is, L(B) = L/a.

Exercise 4.2.5(b)

We shall use D_a for "'the derivative with respect to a." The key observation is that if
epsilon is not in L(R), then the derivative of RS will always remove an a from the portion
of a string that comes from R. However, if epsilon is in L(R), then the string might have
nothing from R and will remove a from the beginning of a string in L(S) (which is also a
string in L(RS). Thus, the rule we want is:

If epsilon is not in L(R), then D_a(RS) = (D_a(R))S. Otherwise, D_a(RS) = D _a(R)S +
D a(S).

Exercise 4.2.5(e)
L may have no string that begins with 0.
Exercise 4.2.5(f)

This condition says that whenever Ow is in L, then w is in L, and vice-versa. Thus, L must
be of the form L(0*)M for some language M (not necessarily a regular language) that has
no string beginning with 0.

In proof, notice first that D _O(L(0*)M = D _0(L(0*))M union D_0(M) = L(0*)M. There
are two reasons for the last step. First, observe that D 0 applied to the language of all
strings of 0's gives all strings of 0's, that is, L(0*). Second, observe that because M has no
string that begins with 0, D_0(M) is the empty set [that's part (e)].



We also need to show that every language N that is unchanged by D 0 is of this form. Let
M be the set of strings in N that do not begin with 0. If NV is unchanged by D _0, it follows
that for every string w in M, 00...0w is in N; thus, N includes all the strings of L(0*)M.
However, N cannot include a string that is not in L(0*)M. If x were such a string, then we
can remove all the 0's at the beginning of x and get some string y that is also in V. But y
must also be in M.

Exercise 4.2.8

Let A be a DFA for L. We construct DFA B for half(L). The state of B is of the form
[q.S], where:

e ¢ is the state 4 would be in after reading whatever input B has read so far.

o Sis the set of states of 4 such that 4 can get from exactly these states to an
accepting state by reading any input string whose length is the same as the length
of the string B has read so far.

It is important to realize that it is not necessary for B to know how many inputs it has
read so far; it keeps this information up-to-date each time it reads a new symbol. The rule
that keeps things up to date is: delta_B([q,S],a) = [delta_A(q,a),T], where T is the set of
states p of A4 such that there is a transition from p to any state of S on any input symbol. In
this manner, the first component continues to simulate 4, while the second component
now represents states that can reach an accepting state following a path that is one longer
than the paths represented by S.

To complete the construction of B, we have only to specify:

o The initial state is /g _0,F], that is, the initial state of 4 and the accepting states of
A. This choice reflects the situation when A has read 0 inputs: it is still in its initial
state, and the accepting states are exactly the ones that can reach an accepting
state on a path of length 0.

o The accepting states of B are those states /¢q,S/ such that g is in S. The justification
is that it is exactly these states that are reached by some string of length #, and
there is some other string of length # that will take state g to an accepting state.

Exercise 4.2.13(a)

Start out by complementing this language. The result is the language consisting of all
strings of 0's and 1's that are not in O*1*, plus the strings in L_Onln. If we intersect with
0*1*, the result is exactly L Onln. Since complementation and intersection with a regular
set preserve regularity, if the given language were regular then so would be L Onlin.
Since we know the latter is false, we conclude the given language is not regular.

Exercise 4.2.14(c¢)



Change the accepting states to be those for which the first component is an accepting
state of A L and the second is a nonaccepting state of 4 M. Then the resulting DFA
accepts if and only if the input is in L - M.

Solutions for Section 4.3

Exercise 4.3.1

Let n be the pumping-lemma constant. Test all strings of length between n and 2x-1 for
membership in L. If we find even one such string, then L is infinite. The reason is that the
pumping lemma applies to such a string, and it can be *‘pumped" to show an infinite
sequence of strings are in L.

Suppose, however, that there are no strings in L whose length is in the range n to 2n-1.
We claim there are no strings in L of length 2n or more, and thus there are only a finite
number of strings in L. In proof, suppose w is a string in L of length at least 2xn, and w is
as short as any string in L that has length at least 2xn. Then the pumping lemma applies to
w, and we can write w = xyz, where xz is also in L. How long could xz be? It can't be as
long as 2n, because it is shorter than w, and w is as short as any string in L of length 2x or
more. 1, because xz is at most n shorter than w. Thus, xz is of length between n and 2n-1,
which is a contradiction, since we assumed there were no strings in L with a length in that
range.

Solutions for Section 4.4

Exercise 4.4.1

Revised 10/23/01.
Blx
Clx x
DIx x X
Elx x X
Flx X X X
G] x x X
Hix x x x

BF |AG [CE
CED |BF
*D D |AG

H|AG D




Note, however, that state H is inaccessible, so it should be removed, leaving the first four
states as the minimum-state DFA.
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