THE COOK-LEVIN THEOREM
(SAT IS NP-COMPLETE)

Haoyue Ping
SAT

- Satisfiability Problem

- Given a Boolean formula, determine if there exists an interpretation that satisfies it.

- For example, given \(\phi = (\bar{x} \land y) \lor (x \land z) \)
 - This formula is satisfiable because it’s true when x is false, y is true and z is false.
NP-Complete

- A decision problem is NP-complete when it is both in NP and NP-hard.

- NP means
 - A nondeterministic Turing machine can solve in P
 - It’s verifiable in polynomial time by a deterministic Turing machine

- NP-hard means
 - "at least as hard as the hardest problems in NP"
 - Every problem in NP can be reduced to NP-hard problems in polynomial time
SAT is NP-Complete

- We need to prove that SAT is in both NP and NP-hard

- SAT is in NP
 - A nondeterministic Turing machine can “guess” an assignment and accept if this assignment satisfies ϕ
 - Or given an assignment, a deterministic Turing machine can verify this assignment in polynomial time.

- SAT is NP-hard
 - Any language A in NP is polynomial time reducible to SAT.
 - The IDEA is to turn Turing machine configurations into a SAT formula
Language A in NP and its NTM decider

- Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k.
- Build a tableau to show the configurations and computation branches of N

 - Each row is a configuration of a branch of N
 - N is in NP so
 - It stops in n^k steps
 - Its header moves at most to column n^k
 - There are n^{2k} cells in total
 - N accept if there is an accepting configuration
Encoding the tableau into SAT formula

- Alphabet $C = Q \cup \Gamma \cup \{\#\}$
 - Q is state set and Γ is alphabet of N

- A variable $x_{i,j,s}$
 - When $x_{i,j,s} = 1$, a symbol s from C is in row i and column j of the tableau
 - When $x_{i,j,s} = 0$, otherwise

- Now design $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$
 - ϕ is satisfiable iff there exists an accepting configuration in tableau
 - ϕ is satisfiable iff NTM accepts w in polynomial time.
\[\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}} \]

- \(\phi_{\text{cell}} \)
 - Every cell in tableau is legal, which means there is only one symbol in one cell.

- \(\phi_{\text{start}} \)
 - The first configuration is the starting configuration of \(N \) on input \(w \).

- \(\phi_{\text{move}} \)
 - The configurations are legal according to \(N \)'s transition function.

- \(\phi_{\text{accept}} \)
 - An accepting configuration occurs in tableau.
\(\phi_{\text{cell}} \)

- Every cell in tableau is legal

\[
\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s,t \in C \atop s \neq t} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right]
\]

(At least one symbol is true) AND (There is no two different symbols to be true)
\(\phi_{\text{start}} \)

- The first configuration is the starting configuration of \(N \) on input \(w \).

\[
\phi_{\text{start}} = x_{1,1,\#} \land x_{1,2,\text{q}_0} \land x_{1,3,w_1} \land x_{1,4,w_2} \land \cdots \land x_{1,n+2,w_n} \land x_{1,n+3,\text{\textsc{\#}}} \land \cdots \land x_{1,n^k-1,\text{\textsc{\#}}} \land x_{1,n^k,\#}.
\]
\(\phi_{\text{move}} \)

- The configurations are legal according to \(N \)'s transition function.

\[
\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k} \text{(the \((i, j)\)-window is legal)}
\]

Every “window” is legal…
Window

- Window is of size 2×3
- Window verifies if lower 3 cells are legal, given upper 3 cells

IDEA
- Turing machine header only changes one cell in one move.
- The tape is of length n^k, so $n^k - 3$ cells stay the same.
Window Example

- When
 - $\delta(q_1, a) = \{(q_1, b, R)\}$
 - $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>q_1</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>q_2</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>q_1</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>a</td>
<td>a</td>
<td>q_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>q_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Legal

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>q_1</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>q_2</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>q_1</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>q_2</td>
<td>b</td>
<td>q_2</td>
</tr>
</tbody>
</table>

Illegal
\(\phi \text{move} \)

- The configurations are legal according to \(N \)'s transition function.

\[
\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, 1 < j < n^k} \text{(the (i, j)-window is legal)}
\]

Every “window” is legal

Written formally, a window is legal when all six symbols satisfy the transition function

\[
\bigvee_{a_1, \ldots, a_6} \left(x_{i, j-1, a_1} \land x_{i, j, a_2} \land x_{i, j+1, a_3} \land x_{i+1, j-1, a_4} \land x_{i+1, j, a_5} \land x_{i+1, j+1, a_6} \right)
\]

is a legal window
A configuration occurs in tableau.

\[\phi_{\text{accept}} = \bigvee_{1 \leq i, j \leq n^k} x_{i,j,q_{\text{accept}}} \]

The \(i \)th configuration is accepting.
Reduction

○ Any language $A \in NP$ is decided by a NTM N.

○ Execution of N is denoted by configurations starting from reading input w.

○ These configurations form a tableau.

○ This tableau is of size $n^k \times n^k = n^{2k}$. Each cell contains one variable.

○ Encode this tableau into SAT formula, $\phi = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$

○ ϕ will be of length $O(n^{2k} \log n)$. $\log n$ is to encode variable into binary integers.

○ ϕ guarantees that
 ○ N starts with legal input.
 ○ N moves legally
 ○ N reaches accept iff ϕ is satisfiable.

○ **CONCLUSION** Since SAT is also in NP, SAT now is proved to be NP-complete.
Thanks!